Abstract A28: Tumor cell intrinsic BPTF inhibits NK cell activity and the abundance of natural cytotoxicity receptor co-ligands

Author(s):  
Kimberly Mayes ◽  
Zeinab Elsayed ◽  
Aiman Alhazmi ◽  
Michael Waters ◽  
Suehyb Alkhatib ◽  
...  
Oncotarget ◽  
2017 ◽  
Vol 8 (38) ◽  
pp. 64344-64357 ◽  
Author(s):  
Kimberly Mayes ◽  
Zeinab Elsayed ◽  
Aiman Alhazmi ◽  
Michael Waters ◽  
Suehyb G. Alkhatib ◽  
...  

Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 277-277
Author(s):  
Roberto Bellucci ◽  
Hong-Nam Nguyen ◽  
Allison Martin ◽  
Anna C. Schinzel ◽  
Stefan Heinrichs ◽  
...  

Abstract Abstract 277 NK cells play an important role in innate immune responses directed against autologous cells that have undergone viral or malignant transformation. The ability of NK cells to lyse targets is primarily dependent on the expression of various inhibitory or activating receptors. However, transformed cells have also developed mechanisms to evade immune surveillance and the molecular basis for target resistance to immune-mediated lysis is not well understood. To address this issue we undertook a genetic screening approach to identify novel pathways that modulate tumor cell susceptibility to NK cell lysis. Our genetic screen utilized a subset of the TRC1 lentiviral shRNA library developed at the Broad Institute of Harvard and MIT. The library subset targeted 476 protein kinases and 180 phosphatases that represent 88% and 80%, respectively, of known NCBI sequences with these functions. The library also targeted 372 genes representing tumor suppressors, DNA binding proteins as well as irrelevant shRNAs as controls. Each gene was targeted by 5 or more independent shRNAs tested individually in a 384 well format using robotic manipulations. A total of 6,144 individual shRNAs were incubated with IM-9 myeloma cells and subsequently tested for their ability to modulate response by NKL effector cells (an IL-2 dependent human NK cell line). The top 10 percentile of shRNAs inducing increased secretion of interferon-gamma (INF-γ) from NKL cells was identified. To reduce the likelihood of off-target effects, only genes that were positive for 2 or more independent shRNAs were selected for further analysis. Among the genes that increased target cell susceptibility to NK activity we found 2 members of the Jak family (Jak1 and Jak2) with Jak1 being one of the strongest hits in our screen. IM-9 myeloma cells with stable expression of at least 2 independent shRNAs targeting Jak1 and Jak2 were established and tested for their sensitivity to NKL, NK92 or primary NK cells using INF-γrelease and 51Cr release cytotoxicity assays. Stable suppression of both Jak1 and Jak2 in IM-9 cells induced a significant increase of INF-γsecretion from NK cells and increased sensitivity in cytotoxicity assay when compared to parental IM-9 or cells expressing irrelevant shRNAs. Western blot analysis showed a selective decrease of Jak1 and Jak2 protein in IM-9 cells expressing specific shRNAs but not irrelevant shRNAs. While target cells with reduced expression of Jak1 and Jak2 were more susceptible to NK cell activity, no effect was observed when Jak3 and TYK2 were silenced. We then tested the NK susceptibility of different tumor cell lines with reduced expression of Jak1 and Jak2. Seven additional tumor cell lines representing other hematologic malignancies expressing Jak1 and Jak2 shRNAs were established: myeloma (KM12BM), chronic myeloid leukemia (K562), Burkitt's lymphoma (Daudi), acute myeloid leukemia (U937, ML2 and KG1) and acute T cell leukemia (Jurkat). These experiments confirmed that Jak1 silencing can induce increased susceptibility to NK cell activity. However, this effect was more pronounced in some cases (IM-9, KM12BM, U937, KG1) compared to other cell lines where this effect was limited (K562, ML-2, Jurkat) or absent (Daudi). To investigate the mechanism for modulation of target cell susceptibility to NK cells by Jak1, we compared gene expression profiles of IM-9-Jak1-KO with IM-9 parental cells and IM-9 cells infected with an irrelevant shRNA. No difference in expression was found for ligands of activating NKG2D receptors (MICA, MICB, ULPB1, 2, 3) or ligands for NK inhibitory receptors (HLA Class I genes A, B, C, E). One of the most up-regulated genes in IM-9-Jak1-KO cells was TNFSFR10A (TRAIL-R1), a gene that is known to induce apoptotic signals upon TRAIL engagement. In contrast, FAIM3, an inhibitor of FAS (CD95) signaling, was significantly down-regulated. IM-9-Jak1-KO cells also over-expressed several GALNT genes, recently shown to be markers of TRAIL sensitivity. These results suggest that Jak1 and possibly Jak2 can modulate susceptibility of some tumor cells to NK cell lysis. The mechanism for this effect appears to be at least partly through increased sensitivity to engagement of the TRAIL/FAS extrinsic apoptotic pathway. Disclosures: No relevant conflicts of interest to declare.


Author(s):  
Xiaoping Xu ◽  
Yili Li ◽  
Laurent Gauthier ◽  
Qianming Chen ◽  
Eric Vivier ◽  
...  

Natural killer (NK) cells are essential components of the innate immune response to tumors and viral infections. In humans, the activating natural cytotoxicity receptor NKp30 plays a major role in NK cell-mediated tumor cell lysis. NKp30 recognizes the cell-surface protein B7-H6, which is expressed on tumor, but not healthy, cells. A mouse monoclonal antibody (17B1.3) against human B7-H6 has been developed (Kd= 0.2 µM) to investigate NKp30-mediated NK cell activation and to target tumors expressing B7-H6. Surprisingly, 17B1.3 blocks NK cell activation without interfering with the binding of B7-H6 to NKp30. Understanding the inhibitory mechanism of this antibody will require knowing the structure of 17B1.3 bound to B7-H6. The antigen-binding fragment (Fab) of 17B1.3 was expressed byin vitrofolding from bacterial inclusion bodies. The extracellular domain of B7-H6 was produced by secretion from baculovirus-infected insect cells. Crystals of the Fab 17B1.3–B7-H6 complex grown by macro-seeding diffracted to 2.5 Å resolution and belonged to space groupP212121, with unit-cell parametersa= 89.6,b= 138.0,c= 171.4 Å, α = β = γ = 90°. Comparison of the Fab 17B1.3–B7-H6 structure with the known NKp30–B7-H6 structure will elucidate the inhibitory mechanism of 17B1.3.


2015 ◽  
Vol 89 (15) ◽  
pp. 7932-7943 ◽  
Author(s):  
Tessa M. Campbell ◽  
Brian P. McSharry ◽  
Megan Steain ◽  
Barry Slobedman ◽  
Allison Abendroth

ABSTRACTNatural killer (NK) cell-deficient patients are particularly susceptible to severe infection with herpesviruses, especially varicella-zoster virus (VZV) and herpes simplex virus 1 (HSV-1). The critical role that NK cells play in controlling these infections denotes an intricate struggle for dominance between virus and NK cell antiviral immunity; however, research in this area has remained surprisingly limited. Our study addressed this absence of knowledge and found that infection with VZV was not associated with enhanced NK cell activation, suggesting that the virus uses specific mechanisms to limit NK cell activity. Analysis of viral regulation of ligands for NKG2D, a potent activating receptor ubiquitously expressed on NK cells, revealed that VZV differentially modulates expression of the NKG2D ligands MICA, ULBP2, and ULBP3 by upregulating MICA expression while reducing ULBP2 and ULBP3 expression on the surface of infected cells. Despite being closely related to VZV, infection with HSV-1 produced a remarkably different effect on NKG2D ligand expression. A significant decrease in MICA, ULBP2, and ULBP3 was observed with HSV-1 infection at a total cellular protein level, as well as on the cell surface. We also demonstrate that HSV-1 differentially regulates expression of an additional NKG2D ligand, ULBP1, by reducing cell surface expression while total protein levels are unchanged. Our findings illustrate both a striking point of difference between two closely related alphaherpesviruses, as well as suggest a powerful capacity for VZV and HSV-1 to evade antiviral NK cell activity through novel modulation of NKG2D ligand expression.IMPORTANCEPatients with deficiencies in NK cell function experience an extreme susceptibility to infection with herpesviruses, in particular, VZV and HSV-1. Despite this striking correlation, research into understanding how these two alphaherpesviruses interact with NK cells is surprisingly limited. Through examination of viral regulation of ligands to the activating NK cell receptor NKG2D, we reveal patterns of modulation by VZV, which were unexpectedly varied in response to regulation by HSV-1 infection. Our study begins to unravel the undoubtedly complex interactions that occur between NK cells and alphaherpesvirus infection by providing novel insights into how VZV and HSV-1 manipulate NKG2D ligand expression to modulate NK cell activity, while also illuminating a distinct variation between two closely related alphaherpesviruses.


1983 ◽  
Vol 55 (2) ◽  
pp. 305-309 ◽  
Author(s):  
Yasuhiro Yoda ◽  
Tsukasa Abe ◽  
Akio Tashiro ◽  
Shinsaku Hirosawa ◽  
Kenichi Kawada ◽  
...  

Biomedicines ◽  
2021 ◽  
Vol 9 (5) ◽  
pp. 557
Author(s):  
Xuewen Deng ◽  
Hiroshi Terunuma ◽  
Mie Nieda

Natural killer (NK) cells are cytotoxic immune cells with an innate capacity for eliminating cancer cells and virus- infected cells. NK cells are critical effector cells in the immunosurveillance of cancer and viral infections. Patients with low NK cell activity or NK cell deficiencies are predisposed to increased risks of cancer and severe viral infections. However, functional alterations of human NK cells are associated with lifestyles and aging. Personal lifestyles, such as cigarette smoking, alcohol consumption, stress, obesity, and aging are correlated with NK cell dysfunction, whereas adequate sleep, moderate exercise, forest bathing, and listening to music are associated with functional healthy NK cells. Therefore, adherence to a healthy lifestyle is essential and will be favorable for immunosurveillance of cancer and viral infections with healthy NK cells.


Sign in / Sign up

Export Citation Format

Share Document