Genomic localization of the human gene encoding Dr1 a negative modulator of transcription of class II and class III genes

1996 ◽  
Vol 75 (2-3) ◽  
pp. 186-189 ◽  
Author(s):  
M. Purrello ◽  
C. DiPietro ◽  
A. Rapisarda ◽  
A. Viola ◽  
C. Corsaro ◽  
...  
1985 ◽  
Vol 13 (24) ◽  
pp. 8827-8841 ◽  
Author(s):  
Jiro Kudo ◽  
Lian-Yu Chao ◽  
Franco Narni ◽  
Grady F. Saunders

2009 ◽  
Vol 192 (2) ◽  
pp. 446-455 ◽  
Author(s):  
Christiane Albert-Weissenberger ◽  
Tobias Sahr ◽  
Odile Sismeiro ◽  
Jörg Hacker ◽  
Klaus Heuner ◽  
...  

ABSTRACT The bacterial pathogen Legionella pneumophila responds to environmental changes by differentiation. At least two forms are well described: replicative bacteria are avirulent; in contrast, transmissive bacteria express virulence traits and flagella. Phenotypic analysis, Western blotting, and electron microscopy of mutants of the regulatory genes encoding RpoN, FleQ, FleR, and FliA demonstrated that flagellin expression is strongly repressed and that the mutants are nonflagellated in the transmissive phase. Transcriptome analyses elucidated that RpoN, together with FleQ, enhances transcription of 14 out of 31 flagellar class II genes, which code for the basal body, hook, and regulatory proteins. Unexpectedly, FleQ independent of RpoN enhances the transcription of fliA encoding sigma 28. Expression analysis of a fliA mutant showed that FliA activates three out of the five remaining flagellar class III genes and the flagellar class IV genes. Surprisingly, FleR does not induce but inhibits expression of at least 14 flagellar class III genes on the transcriptional level. Thus, we propose that flagellar class II genes are controlled by FleQ and RpoN, whereas the transcription of the class III gene fliA is controlled in a FleQ-dependent but RpoN-independent manner. However, RpoN and FleR might influence flagellin synthesis on a posttranscriptional level. In contrast to the commonly accepted view that enhancer-binding proteins such as FleQ always interact with RpoN to fullfill their regulatory functions, our results strongly indicate that FleQ regulates gene expression that is RpoN dependent and RpoN independent. Finally, FliA induces expression of flagellar class III and IV genes leading to the complete synthesis of the flagellum.


Development ◽  
1999 ◽  
Vol 126 (21) ◽  
pp. 4913-4923 ◽  
Author(s):  
C.L. Byars ◽  
K.L. Bates ◽  
A. Letsou

During dorsal closure in Drosophila melanogaster, cells of the lateral epidermis migrate over the amnioserosa to encase the embryo. At least three classes of dorsal-open group gene products are necessary for this morphogenetic movement. Class I genes code for structural proteins that effect changes in epidermal cell shape and motility. Class II and III genes code for regulatory components of closure: Class II genes encode Drosophila Jun amino (N)-terminal kinase (DJNK) signaling molecules and Class III genes encode Decapentaplegic-mediated signaling molecules. All characterized dorsal-open group gene products function in the epidermis. Here we report a molecular and genetic characterization of raw, a newly defined member of the Class II dorsal-open group genes. We show that the novel protein encoded by raw is required for restriction of DJNK signaling to leading edge epidermal cells as well as for proper development of the amnioserosa. Taken together, our results demonstrate a role for Raw in restriction of epidermal signaling during closure and suggest that this effect may be mediated via the amnioserosa.


Healthcare ◽  
2021 ◽  
Vol 9 (4) ◽  
pp. 413
Author(s):  
Hui-Ling Chen ◽  
Jason Chen-Chieh Fang ◽  
Chia-Jung Chang ◽  
Ti-Feng Wu ◽  
I-Kuan Wang ◽  
...  

Background. Previous studies have shown that environmental cadmium exposure could disrupt salivary gland function and is associated with dental caries and reduced bone density. Therefore, this cross-sectional study attempted to determine whether tooth decay with tooth loss following cadmium exposure is associated with some dental or skeletal traits such as malocclusions, sagittal skeletal pattern, and tooth decay. Methods. Between August 2019 and June 2020, 60 orthodontic patients with no history of previous orthodontics, functional appliances, or surgical treatment were examined. The patients were stratified into two groups according to their urine cadmium concentrations: high (>1.06 µg/g creatinine, n = 28) or low (<1.06 µg/g creatinine, n = 32). Results. The patients were 25.07 ± 4.33 years old, and most were female (female/male: 51/9 or 85%). The skeletal relationship was mainly Class I (48.3%), followed by Class II (35.0%) and Class III (16.7%). Class I molar relationships were found in 46.7% of these patients, Class II molar relationships were found in 15%, and Class III molar relationships were found in 38.3%. The mean decayed, missing, and filled surface (DMFS) score was 8.05 ± 5.54, including 2.03 ± 3.11 for the decayed index, 0.58 ± 1.17 for the missing index, and 5.52 ± 3.92 for the filled index. The mean index of complexity outcome and need (ICON) score was 53.35 ± 9.01. The facial patterns of these patients were within the average low margin (26.65 ± 5.53 for Frankfort–mandibular plane angle (FMA)). There were no significant differences in the above-mentioned dental indices between patients with high urine cadmium concentrations and those with low urine cadmium concentrations. Patients were further stratified into low (<27, n = 34), average (27–34, n = 23), and high (>34, n = 3) FMA groups. There were no statistically significant differences in the urine cadmium concentration among the three groups. Nevertheless, a marginally significant p-value of 0.05 for urine cadmium concentration was noted between patients with low FMA and patients with high FMA. Conclusion. This analysis found no association between environmental cadmium exposure and dental indices in our orthodontic patients.


Genetics ◽  
1999 ◽  
Vol 153 (2) ◽  
pp. 621-641 ◽  
Author(s):  
Dawn A Thompson ◽  
Franklin W Stahl

AbstractMeiotic exchange occurs preferentially between homologous chromatids, in contrast to mitotic recombination, which occurs primarily between sister chromatids. To identify functions that direct meiotic recombination events to homologues, we screened for mutants exhibiting an increase in meiotic unequal sister-chromatid recombination (SCR). The msc (meiotic sister-chromatid recombination) mutants were quantified in spo13 meiosis with respect to meiotic unequal SCR frequency, disome segregation pattern, sporulation frequency, and spore viability. Analysis of the msc mutants according to these criteria defines three classes. Mutants with a class I phenotype identified new alleles of the meiosis-specific genes RED1 and MEK1, the DNA damage checkpoint genes RAD24 and MEC3, and a previously unknown gene, MSC6. The genes RED1, MEK1, RAD24, RAD17, and MEC1 are required for meiotic prophase arrest induced by a dmc1 mutation, which defines a meiotic recombination checkpoint. Meiotic unequal SCR was also elevated in a rad17 mutant. Our observation that meiotic unequal SCR is elevated in meiotic recombination checkpoint mutants suggests that, in addition to their proposed monitoring function, these checkpoint genes function to direct meiotic recombination events to homologues. The mutants in class II, including a dmc1 mutant, confer a dominant meiotic lethal phenotype in diploid SPO13 meiosis in our strain background, and they identify alleles of UBR1, INP52, BUD3, PET122, ELA1, and MSC1-MSC3. These results suggest that DMC1 functions to bias the repair of meiosis-specific double-strand breaks to homologues. We hypothesize that the genes identified by the class II mutants function in or are regulators of the DMC1-promoted interhomologue recombination pathway. Class III mutants may be elevated for rates of both SCR and homologue exchange.


Sign in / Sign up

Export Citation Format

Share Document