Epoetin β Once-Weekly Therapy in Anemic Patients with Solid Tumors and Non-Myeloid Hematological Malignancies Receiving Chemotherapy

Oncology ◽  
2008 ◽  
Vol 74 (1-2) ◽  
pp. 112-118 ◽  
Author(s):  
Dominique Spaëth ◽  
Bernard Desablens ◽  
Philippe Rodon ◽  
Bertrand Mennecier ◽  
Stéphane Oudard ◽  
...  
2021 ◽  
Vol 22 (11) ◽  
pp. 5899
Author(s):  
Ewa Wrona ◽  
Maciej Borowiec ◽  
Piotr Potemski

CAR-T (chimeric antigen receptor T) cells have emerged as a milestone in the treatment of patients with refractory B-cell neoplasms. However, despite having unprecedented efficacy against hematological malignancies, the treatment is far from flawless. Its greatest drawbacks arise from a challenging and expensive production process, strict patient eligibility criteria and serious toxicity profile. One possible solution, supported by robust research, is the replacement of T lymphocytes with NK cells for CAR expression. NK cells seem to be an attractive vehicle for CAR expression as they can be derived from multiple sources and safely infused regardless of donor–patient matching, which greatly reduces the cost of the treatment. CAR-NK cells are known to be effective against hematological malignancies, and a growing number of preclinical findings indicate that they have activity against non-hematological neoplasms. Here, we present a thorough overview of the current state of knowledge regarding the use of CAR-NK cells in treating various solid tumors.


Author(s):  
Öykü Umut ◽  
Adrian Gottschlich ◽  
Stefan Endres ◽  
Sebastian Kobold

SummaryChimeric antigen receptor (CAR) T cell therapy has been established in the treatment of hematological malignancies. However, in solid tumors its efficacy remains limited. The aim of this article is to give an overview of the field of cell therapy itself, to introduce the underlying concepts of CAR T cell-based treatment approaches and to address its limitations in advancing the treatment for solid malignancies.


2011 ◽  
Author(s):  
Krzysztof Brzozka ◽  
Aleksandra Sabiniarz ◽  
Wojciech Czardybon ◽  
Marek Cholody ◽  
Agnieszka Szamborska-Gbur ◽  
...  

Blood ◽  
2020 ◽  
Vol 135 (24) ◽  
pp. 2159-2170
Author(s):  
Sunil K. Joshi ◽  
Kristin Qian ◽  
William H. Bisson ◽  
Kevin Watanabe-Smith ◽  
Ariane Huang ◽  
...  

Abstract Much of what is known about the neurotrophic receptor tyrosine kinase (NTRK) genes in cancer was revealed through identification and characterization of activating Trk fusions across many tumor types. A resurgence of interest in these receptors has emerged owing to the realization that they are promising therapeutic targets. The remarkable efficacy of pan-Trk inhibitors larotrectinib and entrectinib in clinical trials led to their accelerated, tissue-agnostic US Food and Drug Administration (FDA) approval for adult and pediatric patients with Trk-driven solid tumors. Despite our enhanced understanding of Trk biology in solid tumors, the importance of Trk signaling in hematological malignancies is underexplored and warrants further investigation. Herein, we describe mutations in NTRK2 and NTRK3 identified via deep sequencing of 185 patients with hematological malignancies. Ten patients contained a point mutation in NTRK2 or NTRK3; among these, we identified 9 unique point mutations. Of these 9 mutations, 4 were oncogenic (NTRK2A203T, NTRK2R458G, NTRK3E176D, and NTRK3L449F), determined via cytokine-independent cellular assays. Our data demonstrate that these mutations have transformative potential to promote downstream survival signaling and leukemogenesis. Specifically, the 3 mutations located within extracellular (ie, NTRK2A203T and NTRK3E176D) and transmembrane (ie, NTRK3L449F) domains increased receptor dimerization and cell-surface abundance. The fourth mutation, NTRK2R458G, residing in the juxtamembrane domain, activates TrkB via noncanonical mechanisms that may involve altered interactions between the mutant receptor and lipids in the surrounding environment. Importantly, these 4 activating mutations can be clinically targeted using entrectinib. Our findings contribute to ongoing efforts to define the mutational landscape driving hematological malignancies and underscore the utility of FDA-approved Trk inhibitors for patients with aggressive Trk-driven leukemias.


Sign in / Sign up

Export Citation Format

Share Document