Nonirradiated Human Fibroblasts and Irradiated 3T3-J2 Murine Fibroblasts as a Feeder Layer for Keratinocyte Growth and Differentiation in vitro on a Fibrin Substrate

2010 ◽  
Vol 191 (1) ◽  
pp. 21-35 ◽  
Author(s):  
Laura Panacchia ◽  
Elena Dellambra ◽  
Sergio Bondanza ◽  
Patrizia Paterna ◽  
Riccardo Maurelli ◽  
...  
2011 ◽  
Vol 81 (1) ◽  
pp. 34-42 ◽  
Author(s):  
Joel Deneau ◽  
Taufeeq Ahmed ◽  
Roger Blotsky ◽  
Krzysztof Bojanowski

Type II diabetes is a metabolic disease mediated through multiple molecular pathways. Here, we report anti-diabetic effect of a standardized isolate from a fossil material - a mineraloid leonardite - in in vitro tests and in genetically diabetic mice. The mineraloid isolate stimulated mitochondrial metabolism in human fibroblasts and this stimulation correlated with enhanced expression of genes coding for mitochondrial proteins such as ATP synthases and ribosomal protein precursors, as measured by DNA microarrays. In the diabetic animal model, consumption of the Totala isolate resulted in decreased weight gain, blood glucose, and glycated hemoglobin. To our best knowledge, this is the first description ever of a fossil material having anti-diabetic activity in pre-clinical models.


2021 ◽  
Vol 14 (6) ◽  
pp. 541
Author(s):  
Hani A. Alhadrami ◽  
Ahmed M. Sayed ◽  
Heba Al-Khatabi ◽  
Nabil A. Alhakamy ◽  
Mostafa E. Rateb

The COVID-19 pandemic is still active around the globe despite the newly introduced vaccines. Hence, finding effective medications or repurposing available ones could offer great help during this serious situation. During our anti-COVID-19 investigation of microbial natural products (MNPs), we came across α-rubromycin, an antibiotic derived from Streptomyces collinus ATCC19743, which was able to suppress the catalytic activity (IC50 = 5.4 µM and Ki = 3.22 µM) of one of the viral key enzymes (i.e., MPro). However, it showed high cytotoxicity toward normal human fibroblasts (CC50 = 16.7 µM). To reduce the cytotoxicity of this microbial metabolite, we utilized a number of in silico tools (ensemble docking, molecular dynamics simulation, binding free energy calculation) to propose a novel scaffold having the main pharmacophoric features to inhibit MPro with better drug-like properties and reduced/minimal toxicity. Nevertheless, reaching this novel scaffold synthetically is a time-consuming process, particularly at this critical time. Instead, this scaffold was used as a template to explore similar molecules among the FDA-approved medications that share its main pharmacophoric features with the aid of pharmacophore-based virtual screening software. As a result, cromoglicic acid (aka cromolyn) was found to be the best hit, which, upon in vitro MPro testing, was 4.5 times more potent (IC50 = 1.1 µM and Ki = 0.68 µM) than α-rubromycin, with minimal cytotoxicity toward normal human fibroblasts (CC50 > 100 µM). This report highlights the potential of MNPs in providing unprecedented scaffolds with a wide range of therapeutic efficacy. It also revealed the importance of cheminformatics tools in speeding up the drug discovery process, which is extremely important in such a critical situation.


Author(s):  
Sophia Letsiou ◽  
Aggeliki Karamaouna ◽  
Ioannis Ganopoulos ◽  
Aliki Kapazoglou ◽  
Aliki Xanthopoulou ◽  
...  

1996 ◽  
Vol 63 (1_suppl) ◽  
pp. 65-68
Author(s):  
S. De Angeli ◽  
A. Fandella ◽  
C. Gatto ◽  
S. Buoro ◽  
C. Favretti ◽  
...  

A study was carried out on the effect of stroma-epithelium interaction on cellular growth and morphology in co-coltures of U285 prostatic epithelial cells with human prostatic and esophageal stromal cells and with murine fibroblasts of the 3T3-J2 line. The proliferation rate was determined by growth tests of neutral red and kenacid blue. Morphological observations were made under optical microscope on the same cultures used for the growth tests. Results highlighted a marked reduction in cellular growth in the co-cultures compared to control cultures, as well as the tendency of the stromal and epithelial cells to re-organise themselves in pseudo-acinous structures.


1998 ◽  
Vol 9 (7) ◽  
pp. 1661-1674 ◽  
Author(s):  
Theodore T. Wu ◽  
J. David Castle

Secretory carrier membrane proteins (SCAMPs) are ubiquitously expressed proteins of post-Golgi vesicles. In the presence of the tyrosine phosphatase inhibitor vanadate, or after overexpression in Chinese hamster ovary (CHO) cells, SCAMP1 and SCAMP3 are phosphorylated selectively on tyrosine residue(s). Phosphorylation is reversible after vanadate washout in situ or when isolated SCAMP3 is incubated with the recombinant tyrosine phosphatase PTP1B. Vanadate also causes the partial accumulation of SCAMP3, but not SCAMP1, in “patches” at or near the cell surface. A search for SCAMP kinase activities has shown that SCAMPs 1 and 3, but not SCAMP2, are tyrosine phosphorylated in EGF-stimulated murine fibroblasts overexpressing the EGF receptor (EGFR). EGF catalyzes the progressive phosphorylation of the SCAMPs up to 1 h poststimulation and may enhance colocalization of the EGFR and SCAMP3 within the cell interior. EGF also induces SCAMP–EGFR association, as detected by coimmunoprecipitation, and phosphorylation of SCAMP3 is stimulated by the EGFR in vitro. These results suggest that phosphorylation of SCAMPs, either directly or indirectly, may be functionally linked to the internalization/down-regulation of the EGFR.


2001 ◽  
Vol 36 (5) ◽  
pp. 245-251 ◽  
Author(s):  
Louise A. Mawn ◽  
David R. Jordan ◽  
Steven Gilberg

1990 ◽  
Vol 10 (2) ◽  
pp. 225-229 ◽  
Author(s):  
Susan Forster ◽  
Lynne Scarlett ◽  
John B. Lloyd

It is well established that when cystine-depleted cystinotic cells are cultured in cystine-containing medium, they reaccumulate cystine within their lysosomes more rapidly than when cultured in cystine-free medium. This has been a puzzling result, since the lysosome membrane of cystinotic cells is impermeable to cystine. To probe the mechanism of cystine reaccumulation, we have measured reaccumulation in the presence of colchicine, an inhibitor of pinocytosis, or of glutamate, a competitive inhibitor of cystine transport into human fibroblasts. Colchicine had no effect, thus eliminating pinocytosis as a putative mechanism for cystine translocation from the culture medium to the lysosomes. Glutamate, however, strongly inhibited cystine reaccumulation. It is concluded that the true mechanism is as follows. 1. Exogenous cystine crosses the plasma membrane on the cystine-glutamate porter. 2. Cystine is reduced in the cytoplasm by GSH. 3. The cysteine that is generated enters the lysosome, where it becomes cystine by participating in the reduction of cystine residues during intralysosomal proteolysis, or by autoxidation.


Sign in / Sign up

Export Citation Format

Share Document