In vitro Formation of Complement Activation Products by Lipopolysaccharide Chemotypes of Salmonellaminnesota

1991 ◽  
Vol 96 (1) ◽  
pp. 51-54 ◽  
Author(s):  
James S. Gardiner ◽  
Lynn B. Keil ◽  
Vincent A. DeBari
Blood ◽  
2012 ◽  
Vol 119 (25) ◽  
pp. 6043-6051 ◽  
Author(s):  
Michelle Elvington ◽  
Yuxiang Huang ◽  
B. Paul Morgan ◽  
Fei Qiao ◽  
Nico van Rooijen ◽  
...  

Abstract Complement inhibitors expressed on tumor cells provide an evasion mechanism against mAb therapy and may modulate the development of an acquired antitumor immune response. Here we investigate a strategy to amplify mAb-targeted complement activation on a tumor cell, independent of a requirement to target and block complement inhibitor expression or function, which is difficult to achieve in vivo. We constructed a murine fusion protein, CR2Fc, and demonstrated that the protein targets to C3 activation products deposited on a tumor cell by a specific mAb, and amplifies mAb-dependent complement activation and tumor cell lysis in vitro. In syngeneic models of metastatic lymphoma (EL4) and melanoma (B16), CR2Fc significantly enhanced the outcome of mAb therapy. Subsequent studies using the EL4 model with various genetically modified mice and macrophage-depleted mice revealed that CR2Fc enhanced the therapeutic effect of mAb therapy via both macrophage-dependent FcγR-mediated antibody-dependent cellular cytotoxicity, and by direct complement-mediated lysis. Complement activation products can also modulate adaptive immunity, but we found no evidence that either mAb or CR2Fc treatment had any effect on an antitumor humoral or cellular immune response. CR2Fc represents a potential adjuvant treatment to increase the effectiveness of mAb therapy of cancer.


Perfusion ◽  
1994 ◽  
Vol 9 (2) ◽  
pp. 109-117 ◽  
Author(s):  
Oddvar Moen ◽  
Erik Fosse ◽  
Jennifer Bråten ◽  
Conny Andersson ◽  
Magne K. Fagerhol ◽  
...  

A Biomedicus centrifugal pump and a Polystan roller pump were compared in vitro with regard to differences in haemolysis, granulocyte and complement activation. Six circuits of tubing and oxygenators were connected to each pump. Heparinized fresh human blood was circulated for 72 hours in the systems. Blood samples were drawn at defined intervals. Haemolysis was assessed by determination of lactate dehydrogenase (LD) and potassium, and granulocyte activation by quantification of the granulocyte proteins calprotectin, lactoferrin and myeloperoxidase. Complement activation was assessed by measuring C3 activation products (C3b, iC3b and C3c), and the terminal C5b-9 complement complex (TCC). The results indicate more haemolysis and complement activation in the roller pump group, revealed by significantly higher concentrations of LD, potassium, C3 activation products and TCC. Calprotectin, lactoferrin and myeloperoxidase were all significantly increased in both groups, but the rise appeared earlier in the roller pump group. The concentrations of LD and potassium both correlated significantly with C3 activation products, indicating that complement activation may at least partly be responsible for the haemolysis.


Author(s):  
Marco Mannes ◽  
Christoph Q. Schmidt ◽  
Bo Nilsson ◽  
Kristina N. Ekdahl ◽  
Markus Huber-Lang

AbstractComplement is one of the most ancient defense systems. It gets strongly activated immediately after acute injuries like trauma, burn, or sepsis and helps to initiate regeneration. However, uncontrolled complement activation contributes to disease progression instead of supporting healing. Such effects are perceptible not only at the site of injury but also systemically, leading to systemic activation of other intravascular cascade systems eventually causing dysfunction of several vital organs. Understanding the complement pathomechanism and its interplay with other systems is a strict requirement for exploring novel therapeutic intervention routes. Ex vivo models exploring the cross-talk with other systems are rather limited, which complicates the determination of the exact pathophysiological roles that complement has in trauma, burn, and sepsis. Literature reporting on these three conditions is often controversial regarding the importance, distribution, and temporal occurrence of complement activation products further hampering the deduction of defined pathophysiological pathways driven by complement. Nevertheless, many in vitro experiments and animal models have shown beneficial effects of complement inhibition at different levels of the cascade. In the future, not only inhibition but also a complement reconstitution therapy should be considered in prospective studies to expedite how meaningful complement-targeted interventions need to be tailored to prevent complement augmented multi-organ failure after trauma, burn, and sepsis.This review summarizes clinically relevant studies investigating the role of complement in the acute diseases trauma, burn, and sepsis with important implications for clinical translation.


1982 ◽  
Vol 156 (1) ◽  
pp. 205-216 ◽  
Author(s):  
P J Lachmann ◽  
M K Pangburn ◽  
R G Oldroyd

The physiological breakdown of C3 has been studied using monoclonal anti-C3 antibodies, and it has been found that the later stages of this process--the breakdown of C3bi--is more complex than had previously been recognized. C3bi is the reaction product produced from C3b by the action of factor I which, in the presence of factor H, produces a double cleavage in the alpha chain of C3b. It is here reported that, both on cells and in the fluid phase, the breakdown of C3bi in serum gives rise to two products: C3c and the product previously described as alpha 2D, which we now propose to designate C3d,g. Alpha 2D differs from C3d in that it contains an additional fragment of approximately 8,000 mol wt that carries the antigenic determinant for the clone 9 monoclonal anti-C3 antibody. C3g cannot be precipitated by anti-C3 antisera and therefore behaves as a uni- or bideterminant antigen. The cleavage of C3d,g to C3d and C3g does not occur in sterile serum. It is also still uncertain what enzyme cleaves C3bi to C3c and C3d,g in plasma. Plasmin can do so in vitro, but plasminogen-depleted serum can still produce the cleavage. The antigenic determinant recognized by clone 9 in C3 is not exposed in C3 or C3b, but appears as a neoantigen in C3bi (and in C3d,g). Anti-C3g therefore is a potentially useful ligand for detecting complement-activation products. C3g represents a new, highly anionic C3 fragment and seems not to be identical with the C3e fragment described by others.


Perfusion ◽  
1999 ◽  
Vol 14 (2) ◽  
pp. 119-127 ◽  
Author(s):  
S T Baksaas ◽  
V Videm ◽  
T Pedersen ◽  
H Karlsen ◽  
T E Mollnes ◽  
...  

The present study was designed to compare the biocompatibility of three cardiopulmonary bypass setups with different surface coatings, and to determine if coating of the whole circuit with one of the coatings was more beneficial than coating of the oxygenator only. Extracorporeal devices entirely coated with synthetic polymers (Avecor, n = 6) were compared to oxygenators coated with synthetic polymers (Avecor, n = 6), end-point, covalently attached heparin (CBAS, n = 6) or absorbed heparin (Duraflo 2, n = 6) in an in vitro model of a heart-lung machine. The circuits were primed with fresh human whole blood and Ringer’s acetate and recirculated at 4 l/min at 30°C for 2 h. Test samples were obtained at regular intervals and analysed for myeloperoxidase (MPO), platelet counts, β-thromboglobulin, heparin, prothrombin fragment 1+2, plasmin-anti-plasmin complexes, and complement activation products. The mean MPO concentrations increased in the Avecor-coated oxygenator group (AV) from 247 at the start to 671 μg/l at the termination of the experiments, in the Avecor-coated total circuit group (AV-T) from 116 to 288 μg/l, in the Duraflo 2 coated oxygenator group (DU) from 160 to 332 μg/l, and in the CBAS-coated oxygenator (CA) group from 172 to 311 μg/l. The MPO concentrations increased significantly in all groups ( p < 0.03). The increase in group A was significantly higher than in the other three groups ( p = 0.007). The mean platelet counts decreased in the Avecor-coated total circuit group from 117 at start to 99 × 109/l at termination of the experiments, in the Avecor-coated oxygenator group from 119 to 103 × 109/l, in the Duraflo 2 group from 96 to 86 × 109/l, and in the CBAS group from 132 to 123 × 109/l. The platelet counts decreased significantly in all groups ( p < 0.01), but the intergroup differences were not significant ( p = 0.15). The mean β-thromboglobulin concentrations increased in the Avecor-coated total circuit group from 193 at the start to 754 ng/ml at the termination of the experiments, in the Avecor-coated oxygenator group from 474 to 1654 ng/l, in the Duraflo 2 group from 496 to 1280 ng/l, and in the CBAS group from 418 to 747 ng/l. The β-thromboglobulin increase was significant in each group ( p < 0.01), but not between the groups ( p = 0.49). The mean heparin concentrations in the Duraflo 2 group increased from 2460 at the start to 2897 IU/l at termination of the experiments, in the CBAS group from 2468 to 2518 IU/l. In the Avecor-coated oxygenator group heparin concentrations decreased from 2010 to 1968 IU/l, and in the Avecor-coated total circuit group from 2002 to 1927 IU/l. The differences in heparin concentrations were significant between the Duraflo 2 group and the other groups ( p < 0.05). The mean prothrombin fragment 1+2 concentrations increased in the CBAS group from 0.4 at the start to 2.1 nmol/l at the end of the experiments, in the Avecor-coated oxygenator group from 0.4 to 0.6 nmol/l, in the Avecor-coated total circuit group from 0.3 to 0.4 nmol/l, and in the Duraflo 2 group from 1.2 to 1.3 nmol/l. The prothrombin fragment 1+2 increase was significant in all groups ( p < 0.05), but there were no significant intergroup differences ( p = 0.54). There were no significant differences at the termination of the experiments among the four groups regarding complement activation as measured by C3 activation products and the terminal complement complex. In the present in vitro model of a heart-lung machine, none of the three specific setups with different coatings was superior with regard to all test parameters. The CBAS group generated the highest levels of prothrombin fragment 1+2 formation, but least complement activation. The increasing plasma heparin concentrations in the Duraflo 2 group indicated more unstable heparin bonding. The Avecor-coated total circuit group were superior to the Avecor-coated oxygenator group regarding plasma concentrations of MPO, but not compared to the CBAS and Duraflo 2-coated oxygenator groups.


1996 ◽  
Vol 76 (05) ◽  
pp. 774-779 ◽  
Author(s):  
John T Brandt ◽  
Carmen J Julius ◽  
Jeanne M Osborne ◽  
Clark L Anderson

SummaryImmune-mediated platelet activation is emerging as an important pathogenic mechanism of thrombosis. In vitro studies have suggested two distinct pathways for immune-mediated platelet activation; one involving clustering of platelet FcyRIIa, the other involving platelet-associated complement activation. HLA-related antibodies have been shown to cause platelet aggregation, but the mechanism has not been clarified. We evaluated the mechanism of platelet aggregation induced by HLA-related antibodies from nine patients. Antibody to platelet FcyRIIa failed to block platelet aggregation with 8/9 samples, indicating that engagement of platelet FcyRIIa is not necessary for the platelet aggregation induced by HLA-related antibodies. In contrast, platelet aggregation was blocked by antibodies to human C8 (5/7) or C9 (7/7). F(ab’)2 fragments of patient IgG failed to induce platelet activation although they bound to HLA antigen on platelets. Intact patient IgG failed to aggregate washed platelets unless aged serum was added. The activating IgG could be adsorbed by incubation with lymphocytes and eluted from the lymphocytes. These results indicate that complement activation is involved in the aggregation response to HLA-related antibodies. This is the first demonstration of complement-mediated platelet aggregation by clinical samples. Five of the patients developed thrombocytopenia in relationship to blood transfusion and two patients developed acute thromboembolic disease, suggesting that these antibodies and the complement-dependent pathway of platelet aggregation may be of clinical significance.


2021 ◽  
Vol 3 (2) ◽  
pp. 116-123
Author(s):  
Rosalind Ramsey‐Goldman ◽  
Roberta Vezza Alexander ◽  
John Conklin ◽  
Cristina Arriens ◽  
Sonali Narain ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document