scholarly journals In silico Analysis and Experimental Validation ofMycobacterium tuberculosis-Specific Proteins and Peptides ofMycobacterium tuberculosisfor Immunological Diagnosis and Vaccine Development

2013 ◽  
Vol 22 (s1) ◽  
pp. 43-51 ◽  
Author(s):  
Abu Salim Mustafa
2020 ◽  
Vol 13 (1) ◽  
Author(s):  
Mona Moballegh Naseri ◽  
Saeed Shams ◽  
Mohammad Moballegh Naseri ◽  
Bita Bakhshi

Abstract Objective Vaccination is an important strategy for the eradication of infectious diseases. CadF protein of Campylobacter jejuni is one of the important factors in the pathogenesis of this bacterium. The purpose of this work was to perform a bioinformatics study to identify an epitope-based CadF vaccine, as a subunit vaccine. Full protein sequences of CadF were extracted from the NCBI and UniProt databases and subjected to in silico evaluations, including sequence analysis, allergenicity, antigenicity, epitope conservancy, and molecular docking assessments done by different servers. Results The results showed that CadF was a highly conserved protein belonging to the outer member proteins superfamily. Among the evaluated epitopes, LSDSLALRL was identified as an antigenic and non-allergenic peptide with a suitable structure for vaccine development. It was also able to stimulate both T and B cells. This 9-mer peptide was located in 136–144 segment of CadF protein and interacted with both HLA-A 0101 and HLA-DRB1 0101 alleles. Overall, the obtained theoretical results showed that CadF protein could be used for designing and evaluating a new effective vaccine against C. jejuni.


2015 ◽  
Vol 16 (9) ◽  
pp. 22190-22204 ◽  
Author(s):  
Guo-Yu Li ◽  
Ya-Xin Zheng ◽  
Fu-Zhou Sun ◽  
Jian Huang ◽  
Meng-Meng Lou ◽  
...  

2020 ◽  
Author(s):  
Mona Moballegh Naseri ◽  
Saeed Shams ◽  
Mohammad Moballegh Naseri ◽  
Bita Bakhshi

Abstract Objective: Vaccination is an important strategy for the eradication of infectious diseases. CadF protein of Campylobacter jejuni is one of the important factors in the pathogenesis of this bacterium. The purpose of this work was to perform a bioinformatics study to identify an epitope-based CadF vaccine, as a subunit vaccine. Full protein sequences of CadF were extracted from the NCBI and UniProt databases and subjected to in silico evaluations, including sequence analysis, allergenicity, antigenicity, epitope conservancy, and molecular docking assessments done by different servers. Results: The results showed that CadF was a highly conserved protein belonging to the outer member proteins superfamily. Among the evaluated epitopes, LSDSLALRL was identified as an antigenic and non-allergenic peptide with a suitable structure for vaccine development. It was also able to stimulate both T and B cells. This 9-mer peptide was located in 136-144 segment of CadF protein and interacted with both HLA-A 0101 and HLA-DRB1 0101 alleles. Overall, the obtained theoretical results showed that CadF protein could be used for designing and evaluating a new effective vaccine against C. jejuni.


Biologics ◽  
2022 ◽  
Vol 2 (1) ◽  
pp. 45-55
Author(s):  
Muhammad Muzammal ◽  
Muzammil Ahmad Khan ◽  
Mohammed Al Mohaini ◽  
Abdulkhaliq J. Alsalman ◽  
Maitham A. Al Hawaj ◽  
...  

Venom from different organisms was used in ancient times to treat a wide range of diseases, and to combat a variety of enveloped and non-enveloped viruses. The aim of this in silico research was to investigate the impact of honeybee venom proteins and peptides against Ebola virus. In the current in silico study, different online and offline tools were used. RaptorX (protein 3D modeling) and PatchDock (protein–protein docking) were used as online tools, while Chimera and LigPlot + v2.1 were used for visualizing protein–protein interactions. We screened nine venom proteins and peptides against the normal Ebola virus spike protein and found that melittin, MCD and phospholipase A2 showed a strong interaction. We then screened these peptides and proteins against mutated strains of Ebola virus and found that the enzyme phospholipase A2 showed a strong interaction. According to the findings, phospholipase A2 found in honeybee venom may be an effective source of antiviral therapy against the deadly Ebola virus. Although the antiviral potency of phospholipase A2 has been recorded previously, this is the first in silico analysis of honeybee phospholipase A2 against the Ebola viral spike protein and its more lethal mutant strain.


PLoS ONE ◽  
2015 ◽  
Vol 10 (6) ◽  
pp. e0130055 ◽  
Author(s):  
Yaxin Zheng ◽  
Jiming Wu ◽  
Xuesong Feng ◽  
Ying Jia ◽  
Jian Huang ◽  
...  

2020 ◽  
Author(s):  
Mona Moballegh Naseri ◽  
Saeed Shams ◽  
Mohammad Moballegh Naseri ◽  
Bita Bakhshi

Abstract Objective: Vaccination is an important strategy for the eradication of infectious diseases. CadF protein of Campylobacter jejuni is one of the important factors in the pathogenesis of this bacterium. The purpose of this work was to perform a bioinformatics study to identify an epitope-based CadF vaccine, as a subunit vaccine. Full protein sequences of CadF were extracted from the NCBI and UniProt databases and subjected to in silico evaluations, including sequence analysis, allergenicity, antigenicity, epitope conservancy, and molecular docking assessments done by different servers. Results: The results showed that CadF was a highly conserved protein belonging to the outer member proteins superfamily. Among the evaluated epitopes, LSDSLALRL was identified as an antigenic and non-allergenic peptide with a suitable structure for vaccine development. It was also able to stimulate both T and B cells. This 9-mer peptide was located in 136-144 segment of CadF protein and interacted with both HLA-A 0101 and HLA-DRB1 0101 alleles. Overall, the obtained theoretical results showed that CadF protein could be used for designing and evaluating a new effective vaccine against C. jejuni.


Sign in / Sign up

Export Citation Format

Share Document