Antidepressant and Neuroprotective Effect of the Chinese Herb Kaixinsan against Lentiviral shRNA Knockdown Brain-Derived Neurotrophic Factor-Induced Injury in vitro and in vivo

2014 ◽  
Vol 69 (3) ◽  
pp. 129-139 ◽  
Author(s):  
Yuan Hu ◽  
Xiao-Jiang Zhou ◽  
Ping Liu ◽  
Xian-Zhe Dong ◽  
Li-Hua Mu ◽  
...  
2020 ◽  
Vol 15 (1) ◽  
pp. FNL38 ◽  
Author(s):  
Zarlascht Karmand ◽  
Hans-Peter Hartung ◽  
Oliver Neuhaus

Aim: To detect IFN β-1a-induced expression of brain-derived neurotrophic factor (BDNF) to undermine the hypothesis of IFN β-1a-associated neuroprotection in multiple sclerosis (MS). Methods: The influence of IFN β-1a on in vitro activated peripheral blood lymphocytes from healthy donors was tested. Proliferation analyses were made to detect T-cell growth. BDNF expression was measured by standard ELISA. To assess the influence of IFN β-1a on BDNF expression in vivo, BDNF serum levels of MS patients treated with IFN β-1a were compared with those of untreated patients. Results: IFN β-1a inhibited T-cell proliferation dose dependently. It induced BDNF expression at middle concentrations. MS patients treated with IFN β-1a exhibited significantly lower BDNF serum levels than untreated patients. Conclusion: IFN β-1a may promote neuroprotection by inducing BDNF expression, but its importance in vivo remains open.


1999 ◽  
Vol 189 (5) ◽  
pp. 865-870 ◽  
Author(s):  
Martin Kerschensteiner ◽  
Eike Gallmeier ◽  
Lüder Behrens ◽  
Vivian Vargas Leal ◽  
Thomas Misgeld ◽  
...  

Brain-derived neurotrophic factor (BDNF) has potent effects on neuronal survival and plasticity during development and after injury. In the nervous system, neurons are considered the major cellular source of BDNF. We demonstrate here that in addition, activated human T cells, B cells, and monocytes secrete bioactive BDNF in vitro. Notably, in T helper (Th)1- and Th2-type CD4+ T cell lines specific for myelin autoantigens such as myelin basic protein or myelin oligodendrocyte glycoprotein, BDNF production is increased upon antigen stimulation. The BDNF secreted by immune cells is bioactive, as it supports neuronal survival in vitro. Using anti-BDNF monoclonal antibody and polyclonal antiserum, BDNF immunoreactivity is demonstrable in inflammatory infiltrates in the brain of patients with acute disseminated encephalitis and multiple sclerosis. The results raise the possibility that in the nervous system, inflammatory infiltrates have a neuroprotective effect, which may limit the success of nonselective immunotherapies.


2017 ◽  
Vol 26 (1) ◽  
pp. 145-156 ◽  
Author(s):  
So Yoon Ahn ◽  
Yun Sil Chang ◽  
Dong Kyung Sung ◽  
Se In Sung ◽  
Jee-Yin Ahn ◽  
...  

Mesenchymal stem cell (MSC) transplantation protects against neonatal severe intraventricular hemorrhage (IVH)-induced brain injury by a paracrine rather than regenerative mechanism; however, the paracrine factors involved and their roles have not yet been delineated. This study aimed to identify the paracrine mediator(s) and to determine their role in mediating the therapeutic effects of MSCs in severe IVH. We first identified significant upregulation of brain-derived neurotrophic factor (BDNF) in MSCs compared with fibroblasts, in both DNA and antibody microarrays, after thrombin exposure. We then knocked down BDNF in MSCs by transfection with small interfering (si)RNA specific for human BDNF. The therapeutic effects of MSCs with or without BDNF knockdown were evaluated in vitro in rat neuronal cells challenged with thrombin, and in vivo in newborn Sprague–Dawley rats by injecting 200 μl of blood on postnatal day 4 (P4), and transplanting MSCs (1 × 105 cells) intraventricularly on P6. siRNA-induced BDNF knockdown abolished the in vitro benefits of MSCs on thrombin-induced neuronal cell death. BDNF knockdown also abolished the in vivo protective effects against severe IVH-induced brain injuries such as the attenuation of posthemorrhagic hydrocephalus, impaired behavioral test performance, increased astrogliosis, increased number of TUNEL cells, ED-1+ cells, and inflammatory cytokines, and reduced myelin basic protein expression. Our data indicate that BDNF secreted by transplanted MSCs is one of the critical paracrine factors that play a seminal role in attenuating severe IVH-induced brain injuries in newborn rats.


Cancers ◽  
2020 ◽  
Vol 12 (3) ◽  
pp. 688
Author(s):  
Adrian Tiron ◽  
Irina Ristescu ◽  
Paula A. Postu ◽  
Crina E. Tiron ◽  
Florin Zugun-Eloae ◽  
...  

Perioperative factors promoting cancer recurrence and metastasis are under scrutiny. While oxygen toxicity is documented in several acute circumstances, its implication in tumor evolution is poorly understood. We investigated hyperoxia long-term effects on cancer progression and some underlying mechanisms using both in vitro and in vivo models of triple negative breast cancer (TNBC). We hypothesized that high oxygen exposure, even of short duration, may have long-term effects on cancer growth. Considering that hyperoxic exposure results in reactive oxygen species (ROS) formation, increased oxidative stress and increased Brain-Derived Neurotrophic Factor (BDNF) expression, BDNF may mediate hyperoxia effects offering cancer cells a survival advantage by increased angiogenesis and epithelial mesenchymal transition (EMT). Human breast epithelial MCF10A, human MDA-MB-231 and murine 4T1 TNBC were investigated in 2D in vitro system. Cells were exposed to normoxia or hyperoxia (40%, 60%, 80% O2) for 6 h. We evaluated ROS levels, cell viability and the expression of BDNF, HIF-1α, VEGF-R2, Vimentin and E-Cadherin by immunofluorescence. The in vivo model consisted of 4T1 inoculation in Balb/c mice and tumor resection 2 weeks after and 6 h exposure to normoxia or hyperoxia (40%, 80% O2). We measured lung metastases and the same molecular markers, immediately and 4 weeks after surgery. The in vitro study showed that short-term hyperoxia exposure (80% O2) of TNBC cells increases ROS, increases BDNF expression and that promotes EMT and angiogenesis. The in vivo data indicates that perioperative hyperoxia enhances metastatic disease and this effect could be BDNF mediated.


2021 ◽  
Vol 15 ◽  
Author(s):  
Jennifer Harre ◽  
Laura Heinkele ◽  
Melanie Steffens ◽  
Athanasia Warnecke ◽  
Thomas Lenarz ◽  
...  

Preservation of the excitability of spiral ganglion neurons (SGN) may contribute to an improved speech perception after cochlear implantation. Thus, the application of exogenous neurotrophic factors such as the neurotrophin brain-derived neurotrophic factor (BDNF) to increase SGN survival in vitro and in vivo is a promising pharmacological approach in cochlear implant (CI) research. Due to the difficult pharmacokinetic profile of proteins such as BDNF, there is a quest for small molecules to mediate the survival of SGN or to increase the efficacy of BDNF. The C3 exoenzyme from Clostridium botulinum could be a potential new candidate for the protection and regeneration of SGN. Inhibition of the RhoA GTPase pathway which can be mediated by C3 is described as a promising strategy to enhance axonal regeneration and to exert pro-survival signals in neurons. Nanomolar concentrations of C3, its enzymatically inactive form C3E174Q, and a 26mer C-terminal peptide fragment covering amino acid 156–181 (C3156-181) potentiated the neuroprotective effect on SGN mediated by BDNF in vitro. The neuroprotective effect of C3/BDNF was reduced to the neuroprotective effect of BDNF alone after the treatment with wortmannin, an inhibitor of the phosphatidylinositol-3-kinase (PI3K).The exoenzyme C3 (wild-type and enzyme-deficient) and the C3 peptide fragment C3154–181 present novel biologically active compounds for the protection of the SGN. The exact underlying intracellular mechanisms that mediate the neuroprotective effect are not clarified yet, but the combination of BDNF (TrkB stimulation) and C3 exoenzyme (RhoA inhibition) can be used to protect SGN in vitro.


Sign in / Sign up

Export Citation Format

Share Document