scholarly journals Extracellular GTP is a Potent Water-Transport Regulator via Aquaporin 5 Plasma-Membrane Insertion in M1-CCD Epithelial Cortical Collecting Duct Cells

2014 ◽  
Vol 33 (3) ◽  
pp. 731-746 ◽  
Author(s):  
Rosa Mancinelli ◽  
Rita Maria Laura La Rovere ◽  
Stefania Fulle ◽  
Sebastiano Miscia ◽  
Marco Marchisio ◽  
...  
1996 ◽  
Vol 270 (4) ◽  
pp. C998-C1010 ◽  
Author(s):  
M. L. Chalfant ◽  
T. G. O'Brien ◽  
M. M. Civan

Amiloride-sensitive whole cell currents have been reported in M-1 mouse cortical collecting duct cells (Korbmacher et al., J. Gen. Physiol. 102: 761-793, 1993). We have confirmed that amiloride inhibits the whole cell currents but not necessarily the measured whole cell currents. Anomalous responses were eliminated by removing external Na+ and/or introducing paraepithelial shunts. The amiloride-sensitive whole cell currents displayed Goldman rectification. The ionic selectivity sequence of the amiloride-sensitive conductance was Li+ > Na+ >> K+. Growth of M-1 cells on permeable supports increased the amiloride-sensitive whole cell permeability, compared with cells grown on plastic. Single amiloride-sensitive channels were observed, which conformed to the highly selective low-conductance amiloride-sensitive class [Na(5)] of epithelial Na+ channels. Hypotonic pretreatment markedly slowed run-down of channel activity. The gating of the M-1 Na+ channel in excised patches was complex. Open- and closed-state dwell-time distributions from patches that display one operative channel were best described with two or more exponential terms each. We conclude that 1) study of M-1 whole cell Na+ currents is facilitated by reducing the transepithelial potential to zero, 2) these M-1 currents reflect the operation of Na(5) channels, and 3) the Na+ channels display complex kinetics, involving > or = 2 open and > or = 2 closed states.


2001 ◽  
Vol 536 (3) ◽  
pp. 769-783 ◽  
Author(s):  
J. A. Sayer ◽  
G. S. Stewart ◽  
S. H. Boese ◽  
M. A. Gray ◽  
S. H. S. Pearce ◽  
...  

2017 ◽  
Vol 31 (12) ◽  
pp. 5399-5408 ◽  
Author(s):  
Viet D. Dang ◽  
Kishore Kumar Jella ◽  
Ragy R. T. Ragheb ◽  
Nancy D. Denslow ◽  
Abdel A. Alli

2009 ◽  
Vol 101 (4) ◽  
pp. 237-250 ◽  
Author(s):  
Pilar Flamenco ◽  
Luciano Galizia ◽  
Valeria Rivarola ◽  
Juan Fernandez ◽  
Paula Ford ◽  
...  

2019 ◽  
Vol 317 (4) ◽  
pp. F986-F995
Author(s):  
Kubra M. Tuna ◽  
Bing-Chen Liu ◽  
Qiang Yue ◽  
Zinah M. Ghazi ◽  
He-Ping Ma ◽  
...  

Abnormally high epithelial Na+ channel (ENaC) activity in the aldosterone-sensitive distal nephron and collecting duct leads to hypertension. Myelin and lymphocyte (Mal) is a lipid raft-associated protein that has been previously shown to regulate Na+-K-2Cl− cotransporter and aquaporin-2 in the kidney, but it is not known whether it regulates renal ENaC. ENaC activity is positively regulated by the anionic phospholipid phosphate phosphatidylinositol 4,5-bisphosphate (PIP2). Members of the myristoylated alanine-rich C-kinase substrate (MARCKS) family increase PIP2 concentrations at the plasma membrane, whereas hydrolysis of PIP2 by phospholipase C (PLC) reduces PIP2 abundance. Our hypothesis was that Mal protein negatively regulates renal ENaC activity by stabilizing PLC protein expression at the luminal plasma membrane. We investigated the association between Mal, MARCKS-like protein, and ENaC. We showed Mal colocalizes with PLC-β3 in lipid rafts and positively regulates its protein expression, thereby reducing PIP2 availability at the plasma membrane. Kidneys of 129Sv mice injected with MAL shRNA lentivirus resulted in increased ENaC open probability in split-open renal tubules. Overexpression of Mal protein in mouse cortical collecting duct (mpkCCD) cells resulted in an increase in PLC-β3 protein expression at the plasma membrane. siRNA-mediated knockdown of MAL in mpkCCD cells resulted in a decrease in PLC-β3 protein expression and an increase in PIP2 abundance. Moreover, kidneys from salt-loaded mice showed less Mal membrane protein expression compared with non-salt-loaded mice. Taken together, Mal protein may play an essential role in the negative feedback of ENaC gating in principal cells of the collecting duct.


1995 ◽  
Vol 148 (2) ◽  
Author(s):  
B. Letz ◽  
A. Ackermann ◽  
C.M. Canessa ◽  
B.C. Rossier ◽  
C. Korbmacher

2003 ◽  
Vol 14 (7) ◽  
pp. 2677-2688 ◽  
Author(s):  
Manlio Vinciguerra ◽  
Georges Deschênes ◽  
Udo Hasler ◽  
David Mordasini ◽  
Martine Rousselot ◽  
...  

In the mammalian kidney the fine control of Na+ reabsorption takes place in collecting duct principal cells where basolateral Na,K-ATPase provides the driving force for vectorial Na+ transport. In the cortical collecting duct (CCD), a rise in intracellular Na+ concentration ([Na+]i) was shown to increase Na,K-ATPase activity and the number of ouabain binding sites, but the mechanism responsible for this event has not yet been elucidated. A rise in [Na+]i caused by incubation with the Na+ ionophore nystatin, increased Na,K-ATPase activity and cell surface expression to the same extent in isolated rat CCD. In cultured mouse mpkCCDcl4 collecting duct cells, increasing [Na+]i either by cell membrane permeabilization with amphotericin B or nystatin, or by incubating cells in a K+-free medium, also increased Na,K-ATPase cell surface expression. The [Na+]i-dependent increase in Na,K-ATPase cell-surface expression was prevented by PKA inhibitors H89 and PKI. Moreover, the effects of [Na+]i and cAMP were not additive. However, [Na+]i-dependent activation of PKA was not associated with an increase in cellular cAMP but was prevented by inhibiting the proteasome. These findings suggest that Na,K-ATPase may be recruited to the cell membrane following an increase in [Na+]i through cAMP-independent PKA activation that is itself dependent on proteasomal activity.


2010 ◽  
Vol 224 (2) ◽  
pp. 405-413 ◽  
Author(s):  
Valeria Rivarola ◽  
Pilar Flamenco ◽  
Luciana Melamud ◽  
Luciano Galizia ◽  
Paula Ford ◽  
...  

Hypertension ◽  
2002 ◽  
Vol 39 (4) ◽  
pp. 860-864 ◽  
Author(s):  
Lian Liu ◽  
Kathleen S. Hering-Smith ◽  
Faith R. Schiro ◽  
L. Lee Hamm

Sign in / Sign up

Export Citation Format

Share Document