Correlates of Hepcidin and NTBI according to HFE Status in Patients Referred to a Liver Centre

2014 ◽  
Vol 133 (2) ◽  
pp. 155-161 ◽  
Author(s):  
Eleanor Ryan ◽  
John D. Ryan ◽  
Jennifer Russell ◽  
Barbara Coughlan ◽  
Harold Tjalsma ◽  
...  

Background/Aims: Innately low hepcidin levels lead to iron overload in HFE-associated hereditary haemochromatosis. Methods: This study compared hepcidin and non-transferrin bound iron (NTBI) levels in untreated iron-loaded and non-iron-loaded C282Y homozygotes to levels in C282Y/H63D compound heterozygotes and individuals with other HFE genotypes associated with less risk of iron overload. Results: As the genotypic risk for iron overload increased, transferrin saturation and serum NTBI levels increased while serum hepcidin levels decreased. Overweight and obese male C282Y homozygotes had significantly higher hepcidin levels than male C282Y homozygotes with a normal BMI. Pearson product-moment analysis showed that serum hepcidin levels significantly correlated with HFE status, serum ferritin, age, NTBI, transferrin saturation, gender and BMI. Subsequent multiple regression analysis showed that HFE status and serum ferritin were significant independent correlates of serum hepcidin levels. Conclusions: In summary, this study has shown that while serum ferritin and HFE status are the most important determinants of hepcidin levels, factors such age, gender, BMI, transferrin saturation and NTBI all interact closely in the matrix of homeostatic iron balance. © 2014 S. Karger AG, Basel

Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 3850-3850 ◽  
Author(s):  
Farzana Sayani ◽  
Sukhvinder Bansal ◽  
Patricia Evans ◽  
Aalim Weljie ◽  
Robert C Hider ◽  
...  

Abstract Background. Factors that determine net synthesis of hepcidin and hence iron absorption and distribution depend on a balance of competing factors which may be disease specific. Such factors include anemia, ineffective erythropoiesis (IE), transferrin saturation (Tf sat), iron overload and inflammation. Recently GDF-15, a marker of erythroid maturation and hence IE, has been linked with depression of hepcidin synthesis in vitro and showed elevated levels in beta thalassemia (Tanno et al, Nat Med, 2007). The relationship of hepcidin synthesis to iron overload in sickle cell disease (SCD) is not clear and may differ from thalassemia syndromes because IE is less marked. We wished to establish whether the dominant factors determining net hepcidin synthesis differed between patients with SCD and those with thalassemia intermedia (TI) and thalassemia major (TM). Patients and methods. Serum hepcidin was measured in hypertransfused (Hb>9.5g/dl) patients with TM (n=18), untransfused or sporadically transfused patients with thalassemia intermedia TI (n=18), and multi-transfused patients with SCD (n=24), and related to markers of anemia, iron overload and erythroid expansion. A newly developed mass spectrometry assay (Bansal et al, Anal Biochem, 2008, In Press) was used to determine serum hepcidin. GDF-15 was measured by an ELISA assay. Multivariate analysis was performed using SIMCA-P software and partial least squares for discriminant analysis (PLS-DA), using samples from each of the clinical groups to investigate relationships between hepcidin, serum iron, non-transferrin bound iron (NTBI), transferrin saturation (Tf sat), serum ferritin, liver iron, transfusion history, erythropoietin, hemoglobin and GDF-15. Results. Serum hepcidin levels were higher in TM (13.9 ± 10.0 nmol/L) than SCD (8.51±8.16 nmol/L, p=0.043) whereas values in TI (3.82 ±3.56 nmol/L) were close to healthy controls (4.04 ± 2.06nmol/l). However, when SCD patients were matched for levels of anemia and iron load with TM, plasma hepcidin levels were similar or higher in SCD. GDF-15 values were highest for TI (11,444± 2177 ng/l), than TM (4117 ± 577 ng/l, P<0.001), whilst SCD patients had the lowest values (1227 ± 208 ng/l, P<0.001 vs TM). Univariate analysis in all patients grouped together showed positive correlations of hepcidin with serum ferritin (r=0.55, p <0.0001) and level of anemia (r=0.27, p= 0.045). Disease specific relationships were identified: negative correlations of serum hepcidin with Tf sat (r=−0.43) and NTBI (r=−0.45) were found for TI and TM but not in SCD, whereas ferritin showed a positive correlation in TM and SCD (r=0.51 and r= 0.56) but not in TI. GDF-15 correlated negatively with hepcidin in TI (r=0.51) but showed no relationship in SCD or TM. Positive correlations of GDF-15 with markers of plasma iron metabolism were seen in TI such as serum iron (r= 0.56), NTBI (r=0.45) and transferrin saturation (r=0.45). These were not seen in TM and tended to be negative relationships (r= −0.45, r= 0.25, r=0.59 respectively). In multivariate analysis, the variables responsible for the separation of the 3 patient groups clustered in 3 major categories including iron handling (serum iron, transferrin saturation, NTBI), ineffective erythropoiesis (GDF-15) and iron loading (ferritin, transfusion history). Hepcidin co-clustered with the iron loading group and was inversely correlated with GDF-15. Conclusion. Competing regulatory effects on hepcidin synthesis differ between TM, TI and SCD. In TI, hepcidin synthesis is suppressed by IE as shown by a dominant effect of GDF-15. In TM, GDF-15 effects on plasma hepcidin are less marked, as IE is lower due to hypertransfusion. This difference is particularly striking in patients at UCLH due to the divergent transfusion policies between TI and TM. The dominant modulating factors in TM are positive relationships to iron load (serum ferritin) but negative relationship with NTBI, serum iron and Tf saturation. However it is not yet clear whether the relationship of NTBI to hepcidin implies direct negative regulatory effect. In multi-transfused SCD patients, GDF-15 (IE) and NTBI have insignificant relationships to plasma hepcidin, with iron load (ferritin) showing the dominant effect: other effects in SCD such as those of chronic inflammation were not examined but require further investigation.


2020 ◽  
Vol 79 (OCE2) ◽  
Author(s):  
Aoibhín Moore Heslin ◽  
Aisling O' Donnell ◽  
Maria Buffini ◽  
Anne Nugent ◽  
Janette Walton ◽  
...  

AbstractExcess body fat is associated with the production of pro-inflammatory molecules from dysfunctional adipose tissue resulting in systemic inflammation. Inflammation stimulates expression of the iron regulatory hormone hepcidin, resulting in elevated serum ferritin and iron overload in metabolic tissues. Hepcidin driven iron maldistribution may be implicated in the development of metabolic diseases such as Type 2 diabetes and CVD. The aim of this study was to investigate the effect of body fat and the associated inflammation on markers of iron homeostasis.Analyses were based on data from the cross-sectional National Adult Nutrition Survey (2008–2010) (www.iuna.net). Percentage body fat (BF%) of participants (n = 1211) was measured by a Tanita BC420MA device. Participants were classified as healthy, overweight or obese based on age and gender-specific BF% ranges. Serum ferritin and serum hepcidin were measured using immunoturbidimetric immunoassays. ANCOVA with Bonferroni post hoc (p < 0.05) was used to compare anthropometric parameters, biochemical markers of iron status and inflammation and nutrient intakes between BF% groups. Predictors of serum hepcidin and serum ferritin were determined using linear regression analysis.In the population 42% were classified as healthy, 33% as overfat and 25% as obese. Serum hepcidin was significantly elevated in obese participants (8.42ng/ml ± 4.2) compared to their healthy counterparts (6.49ng/ml ± 3.9)(p < 0.001). Significantly higher serum ferritin was observed in obese (223ng/ml ± 170) and overfat males (166ng/ml ± 120) compared to healthy males (135ng/ml ± 91)(p < 0.001). A significant percentage of overweight (20%) and obese (32%) participants were at severe risk of iron overload compared to healthy participants (8%)(p < 0.001). No significant differences in dietary iron intakes were observed between BF% groups. Linear regression analysis indicated that BF% was a significant (p < 0.001) predictor of hepcidin in males (β = 0.327) and females (β = 0.226). IL-6 (β = 0.317,p < 0.001) and TNFα (β = 0.229,p < 0.001) were the strongest inflammatory predictors of hepcidin in females only. In males, leptin was a positive predictor (β = 0.159,p = 0.003) of hepcidin, while adiponectin displayed a negative predictive relationship (β = -0.145,p = 0.001)Our results indicate that excessive adiposity is associated with elevated serum ferritin and hepcidin independent of dietary intake. Cytokines are a potential driver of hepcidin in females, with adipose-derived hormones seeming to have the greater effect in males. These results may help to elucidate the relationship between obesity and dysregulated iron metabolism. Further research is required to investigate the metabolic effects of hepcidin-induced iron overload in those with excess body fat.


2021 ◽  
Vol 15 (8) ◽  
pp. 2013-2016
Author(s):  
Shahid Ishaq ◽  
Muhammad Imran ◽  
Hashim Raza ◽  
Khuram Rashid ◽  
Muhammad Imran Ashraf ◽  
...  

Aim: To determine correlation of iron profile in children with different stages of chronic kidney disease (CKD) presenting to tertiary care hospital. Methodology: A total of 81 children with chronic kidney disease stage having glomerular filtration rate (GFR) less than 90 (ml/min/m2) aged 1 – 14 years of either sex were included. Three ml serum sample was taken in vial by hospital duty doctor for serum ferritin level, serum iron, transferrin saturation and total iron binding capacity. The sample was sent to hospital laboratory for reporting. Iron profiling was done evaluating hemoglobin (g/dl), serum iron (ug/dl), serum ferritin (ng/ml), transferrin saturation (%) and total iron binding capacity (ug/dl) while iron load was defined as serum ferritin levels above 300 ng/ml. Correlation of iron profile with different stages of CKD was determined applying one-way analysis of variance (ANOVA). Results: In a total 81 children, 46 (56.8%) were boys while overall mean age was 7.79±2.30 years. Mean duration on hemodialysis was 11.52 ± 9.97 months. Iron overload was observed in 26 (32.1%) children. Significant association of age above 7 years (p=0.031) and residential status as rural (p=0.017) was noted with iron overload whereas iron overload was increasing with increase in stages of CKD (p=0.002). Hemoglobin levels decreased significantly with increase in stages of CKD (p<0.001). Serum iron levels increased significantly with increase in the CKD stages (p=0.039). Serum ferritin levels were increasing significantly with the increase in CKD stages (p=0.031). Transferrin saturation also increased significant with increase in CKD stages (p=0.027). Conclusion: High frequency of iron overload was noted in children with CKD on maintenance hemodialysis and there was linear relationship with stages of CKD and iron overload. Significant correlation of hemoglobin, serum iron, serum ferritin and transferrin saturation was observed with different stages of CKD. Keywords: Iron overload, maintenance hemodialysis, ferritin level.


2015 ◽  
Vol 3 (2) ◽  
pp. 287-292 ◽  
Author(s):  
Khaled M. Salama ◽  
Ola M. Ibrahim ◽  
Ahmed M. Kaddah ◽  
Samia Boseila ◽  
Leila Abu Ismail ◽  
...  

BACKGROUND: Beta Thalassemia is the most common chronic hemolytic anemia in Egypt (85.1%) with an estimated carrier rate of 9-10.2%. Injury to the liver, whether acute or chronic, eventually results in an increase in serum concentrations of Alanine transaminase (ALT) and Aspartate transaminase (AST).AIM: Evaluating the potentiating effect of iron overload & viral hepatitis infection on the liver enzymes.PATIENTS AND METHODS: Eighty (80) thalassemia major patients were studied with respect to liver enzymes, ferritin, transferrin saturation, HBsAg, anti-HCV antibody and HCV-PCR for anti-HCV positive patients.RESULTS: Fifty % of the patients were anti-HCV positive and 55% of them were HCV-PCR positive. Patients with elevated ALT and AST levels had significantly higher mean serum ferritin than those with normal levels. Anti-HCV positive patients had higher mean serum ferritin, serum ALT, AST and GGT levels and higher age and duration of blood transfusion than the negative group. HCV-PCR positive patients had higher mean serum ferritin and serum ALT and also higher age and duration of blood transfusion than the negative group.CONCLUSION: Iron overload is a main leading cause of elevated liver enzymes, and presence of HCV infection is significantly related to the increased iron overload.


Blood ◽  
1992 ◽  
Vol 79 (10) ◽  
pp. 2741-2748 ◽  
Author(s):  
NF Olivieri ◽  
G Koren ◽  
D Matsui ◽  
PP Liu ◽  
L Blendis ◽  
...  

Abstract In patients with thalassemia intermedia in whom hyperabsorption of iron may result in serious organ dysfunction, an orally effective iron- chelating drug would have major therapeutic advantages, especially for the many patients with thalassemia intermedia in the Third World. We report reduction in tissue iron stores and normalization of serum ferritin concentration after 9-month therapy with the oral chelator 1,2- dimethyl-3-hydroxypyrid-4-one (L1) in a 29-year-old man with thalassemia intermedia and clinically significant iron overload (SF 2,174 micrograms/L, transferrin saturation 100%; elevated AST and ALT, abnormal cardiac radionuclide angiogram) who was enrolled in the study with L1 75 mg/kg/day after he refused deferoxamine therapy. L1-Induced 24-hour urinary iron excretion during the first 6 months of therapy was (mean +/- SD, range) 53 +/- 30 (11 to 109) mg (0.77 mg/kg), declining during the last 3 months of L1 to 24 +/- 14 (13–40) mg (0.36 mg/kg), as serum ferritin decreased steadily to normal range (present value, 251 micrograms/L). Dramatic improvement in signal intensity of the liver and mild improvement in that of the heart was shown by comparison of T1- weighted spin echo magnetic resonance imaging with images obtained immediately before L1 administration was observed after 9 months of L1 therapy. Hepatic iron concentration decreased from 14.6 mg/g dry weight of liver before L1 therapy to 1.9 mg/g liver after 9 months of therapy. This constitutes the first report of normalization of serum ferritin concentration in parallel with demonstrated reduction in tissue iron stores as a result of treatment with L1. Use of L1 as a therapeutic option in patients with thalassemia intermedia and iron overload appears warranted.


Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 3204-3204 ◽  
Author(s):  
Vip Viprakasit ◽  
Alison T. Merryweather-Clarke ◽  
Yingyong Chinthammitr ◽  
Lisa Schimanski ◽  
Hal Drakesmith ◽  
...  

Abstract Genetic hemochromatosis (HH) is a common inherited disorder in populations of European origin in which different types of genetic hemochromatosis (type 1–4) have been characterized. Most hemochromatosis-type 1 patients are homozygotes or compound heterozygotes for two HFE mutations C282Y and H63D. Studies of several non-HFE iron overload families led to identification of mutations in hemojuvelin and hepcidin (juvenile form-HFE2A and B), transferrin receptor 2 (HFE3) and ferroportin (HFE4) as a cause of different forms of hemochromatosis. In the Far East, inherited hemochromatosis has rarely been reported and may have been misdiagnosed due to the high prevalence of secondary iron loading from hemoglobin disorders. This report describes, for the first time, non-HFE iron overload in patients from Southeast Asia. The affected Thai family presented with a distinctive clinical phenotype including macrocytosis and elevated transferrin saturation (>95%), increased non-transferrin bound iron (NTBI) as well as raised serum ferritin and marked hepatic hemochromatosis. Our patients tolerated therapeutic phlebotomy well. DNAs from peripheral blood leukocytes were firstly analyzed for three common HFE mutations (C282Y, H63D and IVS5+1 G→A). Subsequently, we screened all coding sequences, promoters and exon/intron boundaries of the HFE, HAMP, TfR2, HJV and SLC40A1 genes using denaturing high performance liquid chromatography (DHPLC). The entire coding region and splice sites of these genes were amplified and directly sequenced. We identified a novel mutation (C326Y) in ferroportin (SLC40A1, IREG-1, MTP-1), a membrane iron transport protein due to a G→A substitution at nucleotide 1281 in exon 7. This mutation was confirmed by restriction fragment length polymorphism (RFLP) analysis using Sfa NI. Six hundred Thai and two hundred Vietnamese chromosomes were analyzed for the C326Y mutation by RFLP analysis and it was not detected in any of the healthy controls studied. This result suggested that the G→A substitution is not a common polymorphism and is likely to be the causative mutation for the phenotype in this family. Previous reported mutations of ferroportin, including A77D and V162del, which lead to type IV hemochromatosis, were characterized by increased serum ferritin despite normal transferrin saturation, in contrast to our patients’ phenotype. These autosomal dominant mutants are postulated to lead to disease due to loss of iron exporting function. Preliminary in vivo assay using transient transfection of wild-type and ferroportin mutants in HeLa or 293T cells revealed, as expected, a loss of function and diminished surface membrane localisation in A77D and V162del mutants. Surprisingly, the C326Y mutant was indistinguishable from wt ferroportin in both iron status of the cell and protein localization suggesting different pathophysiology leading to iron overload in our patients.


Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 3493-3493
Author(s):  
Martin Wermke ◽  
Jan Moritz Middeke ◽  
Nona Shayegi ◽  
Verena Plodeck ◽  
Michael Laniado ◽  
...  

Abstract Abstract 3493 An increased risk for GvHD, infections and liver toxicity after transplant has been attributed to iron overload (defined by serum ferritin) of MDS and AML patients prior to allogeneic hematopoietic stem cell transplantation (allo-HSCT). Nevertheless, the reason for this observation is not very well defined. Consequently, there is a debate whether to use iron chelators in these patients prior to allo-HSCT. In fact, serum ferritin levels and transfusion history are commonly used to guide iron depletion strategies. Both parameters may inadequately reflect body iron stores in MDS and AML patients prior to allo-HSCT. Recently, quantitative magnetic resonance imaging (MRI) was introduced as a tool for direct measurement of liver iron. We therefore aimed at evaluating the accurateness of different strategies for determining iron overload in MDS and AML patients prior to allo-HSCT. Serologic parameters of iron overload (ferritin, iron, transferrin, transferrin saturation, soluble transferrin receptor) and transfusion history were obtained prospectively in MDS or AML patients prior to allo-SCT. In parallel, liver iron content was measured by MRI according to the method described by Gandon (Lancet 2004) and Rose (Eur J Haematol 2006), respectively. A total of 20 AML and 9 MDS patients (median age 59 years, range: 23–74 years) undergoing allo-HSCT have been evaluated so far. The median ferritin concentration was 2237 μg/l (range 572–6594 μg/l) and patients had received a median of 20 transfusions (range 6–127) before transplantation. Serum ferritin was not significantly correlated with transfusion burden (t = 0.207, p = 0.119) but as expected with the concentration of C-reactive protein (t = 0.385, p = 0.003). Median liver iron concentration measured by MRI was 150 μmol/g (range 40–300 μmol/g, normal: < 36 μmol/g). A weak but significant correlation was found between liver iron concentration and ferritin (t = 0.354; p = 0.008). The strength of the correlation was diminished by the influence of 5 outliers with high ferritin concentrations but rather low liver iron content (Figure 1). The same applied to transfusion history which was also only weakly associated with liver iron content (t = 0.365; p = 0.007). Levels of transferrin, transferrin saturation, total iron and soluble transferrin receptor did not predict for liver iron concentration. Our data suggest that serum ferritin or transfusion history cannot be regarded as robust surrogates for the actual iron overload in MDS or AML patients. Therefore we advocate caution when using one of these parameters as the only trigger for chelation therapy or as a risk-factor to predict outcome after allo-HSCT. Figure 1. Correlation of Liver iron content with Ferritin. Figure 1. Correlation of Liver iron content with Ferritin. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 2096-2096
Author(s):  
Reijane Alves de Assis ◽  
Fernando Uliana Kay ◽  
Paulo Vidal Campregher ◽  
Gilberto Szarf ◽  
Fabiana Mendes Conti ◽  
...  

Abstract Abstract 2096 Introduction: Hereditary hemochromatosis (HH) is an autossomic recessive disorder characterized by increased iron absorption. Magnetic resonance imaging – T2* (MRI-T2*) has become a reliable and robust methodology to directly assess the iron burden, with better results in transfusional hemosiderosis compared to indirect methods, such as serum ferritin and transferrin saturation (TS). However, little is known about its role in HH. Objectives: Describe the demographic profile of HH type 1 patients as to the type of the HFE mutation and correlate laboratory parameters to MRI-T2*results. Methods: We collected data from patients with a positive HFE gene mutation who performed abdominal and/or cardiac MRI-T2* in our institution from 2004 to 2011. Images retrieved from the digital archive were analyzed by two blinded independent radiologists using the Thalassemia-Tools software (Cardiovascular Imaging Solutions, London, UK). Laboratory data available within 6 months before or after the MRI study were analyzed using the t-Student test, Exact Fisher's test analysis and multivariate analyses. Results: We analyzed 81 patients, 76 (93%) males and 5 (6.2%) females, with a median age of 48 years (21–80). Liver, pancreatic and splenic MRI-T2*values and LIC calculation were performed in 80 patients, and cardiac T2* assessment in 57 patients. The inter-observer T2* variation coefficient was 5%. Serum ferritin was abnormal in 70 patients (90.9%), while TS was abnormal in 34% of the tests. In our study sample, the H63D mutation was present in 70 patients (86.4%): 11 (13.6%) were homozygous, 59 (72.8%) heterozygous and 7 (8.6%) double heterozygous for C282Y/H63D. Only three patients (3.7%) were homozygous and 6 (7.4%) were heterozygous only for the C282Y mutation. The S65C mutation was detected in heterozygous state in 2 (2.5%) of cases. Two out 57 cases had a positive T2* result and were classified as light cardiac overload (T2*:18.98 e 19.14 ms). Both had the H63D mutation (1 homozygous and 1 heterozygous). Thirty seven out of 80 patients (46.3%) had liver overload in abdominal MRI (T2*: 3.8–11.4ms), being 33 (41.3%) light overload and four (5%) moderate overload (T2*:1.8–3.8ms). We found that 77.8% of patients with liver overload were C282Y carriers, of which 57.2% had double mutation and 40.3% had H63D mutation in hetero or homozigosity. Pancreatic overload was found in 20 patients (25.1%), while 30 patients (37.5%) had splenic overload. There was a slight correlation (r: 0.365) between liver T2* and splenic T2* (p=0.001). The presence of C282Y and H63D mutations was statistically associated with a higher frequency of abnormal liver T2* (p=0.017 and p=0.042, respectively). The H63D mutation was associated with iron accumulation in the liver (p=0,037) and homozygous carriers showed higher levels of liver overload (p=0,038). Conclusion: In our study, serum ferritin was a better surrogate marker for iron overload than ST. In addition, up to 40.3% of patients with H63D mutation had evidence of hepatic iron overload by MRI. These findings differ from the currente literature. The higher RMI positivity might be due to a higher sensitivity to detect lower levels of organic iron. Despite the lack of a control group and laboratory tests or MRI in all the cases studied, our results suggest that RMI-T2* is a promising methodology to guide the therapeutic management of HH patients. The clinical impact of this finding must be investigated in further studies. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 4891-4891
Author(s):  
Mohamed A. Yassin ◽  
Ashraf T Soliman ◽  
Vincenzo Desanctis ◽  
Sandara Abusamaan ◽  
Ahmed Elsotouhy ◽  
...  

Abstract Hereditary hemochromatosis (HH) is an autosomal recessive disorder characterized by excessive intestinal absorption of dietary iron, causing iron overload in different organs, especially the liver. Hemochromatosis may not be recognized until later in life. Patients are usually asymptomatic but may present with a variety of signs and symptoms. These include: hyper-pigmented skin, hepatomegaly, arthralgia, diabetes mellitusand/or heart failure/arrhythmia. The risk of HH related morbidity in HFE compound homozygotes patients (H63D /H63D) is considered rare, we report a male patient with H63D mutation who developed impaired glucose tolerance, and high hepatic enzymes due to significant iron accumulation in the liver as well as Parkinsonian-like syndrome due to iron deposition in the basal ganglia. A 40 year old Qatari male was referred for evaluation of a rise in hemoglobin and hematocrit values with normal MCV, total leucocyte and platelet counts. The patient was asymptomatic with normal vital signs, no depigmentation or hepato-splenomegaly. Hematologic findings included a hemoglobin concentration of Hb 16.5 g/dL, hematocrit 53%, mean corpuscular volume (MCV) 93 fL/red cell, leucocyte count of 7200/ μL and a platelet count of 199000/μL. His serum ferritin was 359 μg/l ( normal values: < 336 μg/l), serum iron: 37 μmol/l ( normal values <28.6μmol/l), fasting transferrin saturation: 64% (normal < 50%). A random glucose 6.5 and 6.4 mmol/L (normal values 5.5mmol/L ), A1C of 5,4 %, normal creatinine and electrolytes, alanine aminotransferase (ALT) of 66 U/l (normal < 40U/l), mild elevation of bilirubin 39 umol/l (normal <24umol/l), normal U&E Hepatitis B and C antibodies were negative. OGTT revealed impaired glucose tolerance. Thyroid function, morning serum cortisol, LH and FSH and serum total testosterone concentrations were in the normal range. A diagnosis of polycythemia vera was excluded on the basis of WHO Criteria 2008. The polymerase chain restriction assay was negative for the common mutation (C282Y) but positive for H63 D mutation. Family screening confirmed HH in his brother (homozygous), whereas his mother, two brothers and the sister were carriers (heterozygous). His four offspring were carriers. This suggested an autosomal recessive mode of inheritance. Conventional MRI study showed a normal liver size with diffuse fatty changes and focal areas of fatty sparing with some evidence of iron deposition. Whereas, T2-star (T2*) sequences showed a diffuse and significant decrease in liver signal intensity. A LIC liver concentration of 27 mg Fe/g dry wt was found (normalvalues:< 2 mg Fe/g dry wt; severe iron overload: ≥15 mg Fe/g dry wt). No significant iron deposition in the spleen, heart or pancreas was observed. At the age of 41 years the patient complained of tremors in both hands and arms while sitting or standing still (resting tremor) that improved with hands movements. A brain MRI revealed iron deposition in the basal ganglion. It was concluded that basal ganglionicn iron deposition mediated the neurological decline. Currently, the transferrin saturation and serum ferritin levels are within normal. Discussion: This is the first case of HH secondary to H63 D among an Arab family and the first reported case of Parkinsonism tremors secondary to this mutation. The H63D HFE variant is less frequently associated with HH, but its role in the neurodegenerative diseases has received a great attention. An accurate evaluation of iron overload is necessary to establish the diagnosis of HH and to guide iron chelation in HH by determination of liver iron concentration (LIC) by means of T2* MRI. Although serum ferritin concentration was only mildly increased a significant siderosis in the liver was detected by MRI T2* technique occurred. Liver siderosis was associated with mild impairment of liver function (increased serum ALT and bilirubin ). Conclusion: Our data further confirm that serum ferritin levels are not an accurate measure of total body iron stores in HH. Iron deposition in the liver and basal ganglion occurred despite mild elevation of ferritin. changes in basal ganglion may present by parkinsonian like tremors in these patients Use,T2* MRI should be encouraged in patients with HH for better evaluation of Iron overload and avoidance of Complications since serum ferritin can be misleading in these conditions. Disclosures Yassin: Qatar National research fund: Patents & Royalties, Research Funding. Aldewik:Qatar Ntional Research Fund: Patents & Royalties, Research Funding.


Blood ◽  
2000 ◽  
Vol 96 (12) ◽  
pp. 3707-3711 ◽  
Author(s):  
Ronald L. Sham ◽  
Richard F. Raubertas ◽  
Caroline Braggins ◽  
Joseph Cappuccio ◽  
Margaret Gallagher ◽  
...  

Screening for hereditary hemochromatosis (HHC) by means of transferrin saturation (TS) levels has been advocated and will identify many patients who are asymptomatic. The purposes of this study were (1) to determine HFE genotypes among asymptomatic HHC patients and correlate this profile with the degree of iron overload and (2) to evaluate the relationship between mobilized iron (mob Fe), age, serum ferritin (SF), and quantitative hepatic iron (QHI) in this population. One hundred twenty-three asymptomatic HHC patients were evaluated; all had quantitative phlebotomy to determine mob Fe and genotyping for C282Y and H63D mutations. Liver biopsies with QHI determinations were performed on 72 of the 123 patients. Of the entire group, 60% were homozygous for C282Y, and 13% were compound heterozygotes (C282Y/H63D). Among asymptomatic patients, the prevalence of homozygous C282Y is lower compared with previous studies that include clinically affected patients. Of those patients with more than 4 g mob Fe, 77% were homozygous C282Y. Asymptomatic patients with lower iron burdens frequently had genotypes other than homozygous C282Y. There was no correlation between age and mob Fe in these patients; however, there was a correlation between mob Fe and both SF (r = 0.68) and QHI (r = 0.75). In conclusion, asymptomatic patients with moderate iron overload had a different genotypic profile than was seen in advanced iron overload. The significance of identifying patients with modest degrees of iron loading, who may not be homozygous for C282Y, must be addressed if routine TS screening is to be implemented.


Sign in / Sign up

Export Citation Format

Share Document