scholarly journals Short-Term Nose-Only Water-Pipe (Shisha) Smoking Exposure Accelerates Coagulation and Causes Cardiac Inflammation and Oxidative Stress in Mice

2015 ◽  
Vol 35 (2) ◽  
pp. 829-840 ◽  
Author(s):  
Abderrahim Nemmar ◽  
Priya Yuvaraju ◽  
Sumaya Beegam ◽  
Badreldin H Ali

Background/Aim: Water-pipe smoking (WPS) has acquired worldwide popularity, and is disseminating particularly rapidly in Europe and North America. However, little is known about the short-term cardiovascular effects of WPS. Methods: Presently, we assessed the short-term cardiovascular effects of nose-only exposure to mainstream WPS in BALB/c mice for 30 min/day for 5 consecutive days. Control mice were exposed to air. At the end of the exposure period, several cardiovascular endpoints were measured. Results: WPS did not affect the number of leukocytes and the plasma concentrations of C-reactive protein, tumor necrosis factor α (TNFα) and interleukin-6 (IL-6). Likewise, plasma levels of lipid peroxidation (LPO), reduced glutathione (GSH) and catalase were not affected by WPS. By contrast, WPS aggravated in vivo thrombosis by shortening the thrombotic occlusion time in pial arterioles and venules. The number of circulating platelets was reduced by WPS suggesting the occurrence of platelet aggregation in vivo. Elevated concentrations of fibrinogen and plasminogen activator inhibitor-1 were seen after the exposure to WPS. Blood samples taken from mice exposed to WPS and exposed to adenosine diphosphate showed more platelet aggregation. The heart concentrations of IL-6 and TNFα were augmented by WPS. Likewise, heart levels of LPO, reactive oxygen species and the antioxidants catalase and GSH were increased by WPS. However, the systolic blood pressure and heart rate were not affected by WPS. Conclusion: It can be concluded that short-term exposure to WPS exerts procoagulatory effects and induce cardiac inflammation and oxidative stress. At the time point investigated, there was no evidence for blood inflammation or oxidative stress.

2013 ◽  
Vol 305 (5) ◽  
pp. H740-H746 ◽  
Author(s):  
Abderrahim Nemmar ◽  
Priya Yuvaraju ◽  
Sumaya Beegam ◽  
Annie John ◽  
Haider Raza ◽  
...  

Water-pipe smoking (WPS) is a major type of smoking in Middle Eastern countries and is increasing in popularity in Western countries and is perceived as relatively safe. However, data on the adverse cardiovascular effects of WPS are scarce. Here, we assessed the cardiovascular effects of nose-only exposure to mainstream WPS generated by commercially available honey-flavored “moasel” tobacco in BALB/c mice. The duration of the session was 30 min/day for 1 mo. Control mice were exposed to air. WPS caused a significant increase of systolic blood pressure (SBP) in vivo (+13 mmHg) and plasma concentrations of IL-6 (+30%) but not that of TNF-α. Heart concentrations of IL-6 (+184%) and TNF-α (+54%) were significantly increased by WPS. Concentrations of ROS (+95%) and lipid peroxidation (+27%) were significantly increased, whereas those of GSH were decreased (−21%). WPS significantly shortened the thrombotic occlusion time in pial arterioles (−46%) and venules (40%). Plasma von Willebrand factor concentrations were significantly increased (+14%) by WPS. Erythrocyte numbers (+15%) and hematocrit (+17%) were significantly increased. Blood samples taken from mice exposed to WPS and exposed to ADP showed significant platelet aggregation compared with air-exposed mice. WPS caused a significant shortening of activated partial thromboplastin time (−45%) and prothrombin time (−13%). We conclude that 1-mo nose-only exposure to WPS increased SBP and caused cardiac inflammation, oxidative stress, and prothrombotic events. Our findings provide plausible elucidation that WPS is injurious to the cardiovascular system.


2017 ◽  
Vol 41 (3) ◽  
pp. 1098-1112 ◽  
Author(s):  
Abderrahim Nemmar ◽  
Suhail Al-Salam ◽  
Sumaya Beegam ◽  
Priya Yuvaraju ◽  
Abderrahim Oulhaj ◽  
...  

Background/Aims: It has been shown, both experimentally and clinically, that water-pipe smoke (WPS) exposure adversely affects the cardiovascular system (CVS) through the generation of oxidative stress and inflammation. Betaine, a naturally occurring compound in common foods, has antioxidant and anti-inflammatory actions. However, its potential to mitigate the adverse effect of WPS on the CVS has never been reported before. This is the subject of this study in mice. Methods: Mice were exposed daily for 30 min to either normal air (control), or to WPS for two consecutive weeks. Betaine was administered daily by gavage at a dose of 10mg/kg, 1h before either air or WPS exposure. Results: Betaine mitigated the in vivo prothrombotic effect of WPS in pial arterioles and venules. Moreover, it reversed the WPS-induced decrease in circulating platelets. Likewise, betaine alleviated platelet aggregation in vitro, and the shortening of activated partial thromboplastin time and prothrombin time induced by WPS. Betaine reduced the increase of plasminogen activator inhibitor-1 and fibrinogen concentrations in plasma induced by WPS. Betaine also diminished the WPS-induced increase of plasma concentrations of interleukin 6 and tumor necrosis factor α, and attenuated the increase of lipid peroxidation and superoxide dismutase. Immunohistochemical analysis of the heart revealed an increase in the expression of inducible nitric oxide synthase and cytochrome C by cardiomyocytes of the WPS-exposed mice. These effects were averted by betaine. Conclusion: Our findings suggest that betaine treatment significantly mitigated WPS-induced hypercoagulability, and inflammation, as well as systemic and cardiac oxidative stress.


2017 ◽  
Vol 2017 ◽  
pp. 1-9 ◽  
Author(s):  
Michał Dobrakowski ◽  
Marta Boroń ◽  
Ewa Birkner ◽  
Aleksandra Kasperczyk ◽  
Ewa Chwalińska ◽  
...  

The present study was designed to explore the possible influence of subacute exposure to lead on the levels of selected essential metals, selected proteins related to them, and oxidative stress parameters in occupationally exposed workers. The study population included 36 males occupationally exposed to lead for 36 to 44 days. Their blood lead level at the beginning of the study was 10.7 ± 7.67 μg/dl and increased to the level of 49.1 ± 14.1 μg/dl at the end of the study. The levels of calcium, magnesium, and zinc increased significantly after lead exposure compared to baseline by 3%, 3%, and 8%, respectively, while the level of copper decreased significantly by 7%. The malondialdehyde (MDA) level and the activities of catalase (CAT) and superoxide dismutase (SOD) did not change due to lead exposure. However, the level of lipid hydroperoxides (LPH) in serum increased significantly by 46%, while the level of erythrocyte lipofuscin (LPS) decreased by 13%. The serum levels of essential metals are modified by a short-term exposure to lead in occupationally exposed workers. A short-term exposure to lead induces oxidative stress associated with elevated levels of LPH but not MDA.


2017 ◽  
Vol 76 ◽  
pp. 230-239 ◽  
Author(s):  
Carla Bacchetta ◽  
Analía Ale ◽  
María F. Simoniello ◽  
Susana Gervasio ◽  
Carla Davico ◽  
...  

1976 ◽  
Vol 36 (01) ◽  
pp. 221-229 ◽  
Author(s):  
Charles A. Schiffer ◽  
Caroline L. Whitaker ◽  
Morton Schmukler ◽  
Joseph Aisner ◽  
Steven L. Hilbert

SummaryAlthough dimethyl sulfoxide (DMSO) has been used extensively as a cryopreservative for platelets there are few studies dealing with the effect of DMSO on platelet function. Using techniques similar to those employed in platelet cryopreservation platelets were incubated with final concentrations of 2-10% DMSO at 25° C. After exposure to 5 and 10% DMSO platelets remained discoid and electron micrographs revealed no structural abnormalities. There was no significant change in platelet count. In terms of injury to platelet membranes, there was no increased availability of platelet factor-3 or leakage of nucleotides, 5 hydroxytryptamine (5HT) or glycosidases with final DMSO concentrations of 2.5, 5 and 10% DMSO. Thrombin stimulated nucleotide and 5HT release was reduced by 10% DMSO. Impairment of thrombin induced glycosidase release was noted at lower DMSO concentrations and was dose related. Similarly, aggregation to ADP was progressively impaired at DMSO concentrations from 1-5% and was dose related. After the platelets exposed to DMSO were washed, however, aggregation and release returned to control values. Platelet aggregation by epinephrine was also inhibited by DMSO and this could not be corrected by washing the platelets. DMSO-plasma solutions are hypertonic but only minimal increases in platelet volume (at 10% DMSO) could be detected. Shrinkage of platelets was seen with hypertonic solutions of sodium chloride or sucrose suggesting that the rapid transmembrane passage of DMSO prevented significant shifts of water. These studies demonstrate that there are minimal irreversible alterations in in vitro platelet function after short-term exposure to DMSO.


2021 ◽  
Vol 186 ◽  
pp. 114490
Author(s):  
Karuppusamy Arunachalam ◽  
Amilcar Sabino Damazo ◽  
Antonio Macho ◽  
Monica Steffi Matchado ◽  
Eduarda Pavan ◽  
...  

Antioxidants ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 507
Author(s):  
Rosaria Meccariello ◽  
Stefania D’Angelo

Aging and, particularly, the onset of age-related diseases are associated with tissue dysfunction and macromolecular damage, some of which can be attributed to accumulation of oxidative damage. Recently, growing interest has emerged on the beneficial effects of plant-based diets for the prevention of chronic diseases including obesity, diabetes, and cardiovascular disease. Several studies collectively suggests that the intake of polyphenols and their major food sources may exert beneficial effects on improving insulin resistance and related diabetes risk factors, such as inflammation and oxidative stress. They are the most abundant antioxidants in the diet, and their intake has been associated with a reduced aging in humans. Polyphenolic intake has been shown to be effective at ameliorating several age-related phenotypes, including oxidative stress, inflammation, impaired proteostasis, and cellular senescence, both in vitro and in vivo. In this paper, effects of these phytochemicals (either pure forms or polyphenolic-food) are reviewed and summarized according to affected cellular signaling pathways. Finally, the effectiveness of the anti-aging preventive action of nutritional interventions based on diets rich in polyphenolic food, such as the diets of the Blue zones, are discussed.


2021 ◽  
Vol 96 ◽  
pp. 107593
Author(s):  
Yiming Ma ◽  
Lijuan Luo ◽  
Xiangming Liu ◽  
Herui Li ◽  
Zihang Zeng ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document