scholarly journals The Anticancer Activity of the Substituted Pyridone-Annelated Isoindigo (5'-Cl) Involves G0/G1 Cell Cycle Arrest and Inactivation of CDKs in the Promyelocytic Leukemia Cell Line HL-60

2015 ◽  
Vol 35 (5) ◽  
pp. 1943-1957 ◽  
Author(s):  
Ayman M. Saleh ◽  
Ahmad Aljada ◽  
Mustafa M. El-Abadelah ◽  
Mutasem O. Taha ◽  
Salim S. Sabri ◽  
...  

Background/Aims: The antileukemic potential of isoindigos make them desired candidates for understanding their mechanism of action. We have recently synthesized a novel group of pyridone-annelated isoindigos and identified the derivative 5'-Cl that is cytotoxic to various cancer cell lines. In the present study, we analyzed the effect of this compound on cell cycle of the promyelocytic leukemia cell line HL-60. Methods: HL-60 cells were treated with 5'-Cl and its effect on cell cycle stages were determined by flow cytometry. Expression of cyclins, cyclin dependent kinases (CDKs) and cyclin kinase inhibitors (CKIs) were determined by Western blotting, and activation of CDKs was studied using kinase assays. Results: 5'-Cl remarkably arrested cell cycle in HL-60 cells at the G0/G1 phase in a dose and time-dependent manner. Furthermore, 5'-Cl treatment significantly inhibited expression of D-cyclins, CDK2 and CDK4 and suppressed phosphorylation of the retinoblastoma protein Rb, whereas it increased the level of CKI p21. Molecular modelling experiments show that 5'-Cl may compete with ATP for binding to the catalytic subunit of CDK2 and CDK4 that could lead to inhibition of these enzymes. Indeed, 5'-Cl inhibited the kinase activity of CDK2 and CDK4 both in cell free systems and in treated cells. 5'-Cl also inhibited cell cycle progression in several other tumor cell lines. Conclusion: We demonstrate the potent inhibitory effects of 5'-Cl on HL-60 cells could be mediated by arresting cells in the G0/G1 phase.

1996 ◽  
Vol 24 (4) ◽  
pp. 581-587
Author(s):  
Cristiana Zanetti ◽  
Arrnalaura Stammati ◽  
Orazio Sapora ◽  
Flavia Zucco

The aim of this study was to investigate the endpoints related to cell death, either necrosis or apoptosis, induced by four chemicals in the promyelocytic leukemia cell line, HL-60. Cell morphology, DNA fragmentation, cytofluorimetric analysis and oxygen consumption were used to classify the type of cell death observed. In our analysis, we found that not all the selected parameters reproduced the differences observed in the cell death caused by the four chemicals tested. As cell death is a very complex phenomenon, several factors should be taken into account (cell type, exposure time and chemical concentration), if chemicals are to be classified according to differences in the mechanisms more directly involved in cell death.


2017 ◽  
Vol 87 ◽  
pp. 39-47 ◽  
Author(s):  
Sylwia Michlewska ◽  
Maksim Ionov ◽  
Dzmitry Shcharbin ◽  
Marta Maroto-Díaz ◽  
Rafael Gomez Ramirez ◽  
...  

Bionatura ◽  
2021 ◽  
Vol 6 (2) ◽  
pp. 1725-1732
Author(s):  
Hamdah Alsaeedi ◽  
Rowaid Qahwaji ◽  
Talal Qadah

Kola nut extracts have recently been reported to contain chemopreventive compounds providing several pharmacological benefits. This study investigated Kola nut extracts' anti-cancer activity on human immortalized myelogenous leukemia cell line K562 through apoptosis and cell cycle arrest. Fresh Kola nuts were prepared as powder and dissolved in DMSO. Different concentrations (50, 100, 150, 200, and 250 μg/ml) of working solutions were prepared. The K562 cells were treated with the different concentrations of Kola nut extract or vehicle control (10% DMSO) followed by incubation at 37°C for 24, 48, and 72 hours, respectively. Treatment activity was investigated in K562 cells; by Resazurin, and FITC/Propidium Iodide and 7-AAD stained cells to evaluate apoptotic cells and the cell cycle's progression. Inhibition of leukemia cell proliferation was observed. The extract effectively induced cell death, early and late apoptosis by approximately 30% after 24 and 48 hours incubation, and an increase in the rate of dead cells by 50% was observed after 72 hours of incubation. Also, cell growth reduction was seen at high dose concentrations (150 and 200 µg/ml), as evident by cell count once treated with Kola nut extract. The total number of apoptotic cells increased from 5.8% of the control group to 27.4% at 250 µg/ml concentration. Moreover, Kola nut extracts' effects on K562 cells increased gradually in a dose and time-dependent manner. It was observed that Kola nut extracts could arrest the cell cycle in the G2/M phase as an increase in the number of cells by 29.8% and 14.6 % were observed from 9.8% and 5.2% after 24 and 48 hours of incubation, respectively. This increase was detected in a dose and time-dependent manner. Kola nut extracts can be used as a novel anti-cancer agent in Leukemia treatment as it has shown significant therapeutic potential and therefore provides new insights in understanding the mechanisms of its action. Keywords: Kola nut extracts, Leukemia, K562 cell line, Apoptosis, Cancer.


Sign in / Sign up

Export Citation Format

Share Document