Applications of Laser Light of Low Power Density. Experimental and Clinical Investigations

Author(s):  
R. Brunner ◽  
D. Haina ◽  
M. Landthaler ◽  
W. Waidelich ◽  
O. Braun-Falco
AIP Advances ◽  
2017 ◽  
Vol 7 (12) ◽  
pp. 125225 ◽  
Author(s):  
T. Motomura ◽  
T. Tabaru

Author(s):  
L Brzeski ◽  
Z Kazimierski

This paper presents a new concept of the externally heated valve (EHV) engine. Air can be used as a working medium in the closed cycle of this engine. Heat delivered to the working air can come from a combustion chamber or another heat generator of an arbitrary type. The engine construction and the thermodynamic cycle performed by it are original and entirely different from the well-known Stirling engine. The main disadvantage of the Stirling engine is its low power density, that is the low power obtained per litre of the engine cylinder volume. In the case of the engine presented here it is possible to achieve power density and efficiency similar to those typical of advanced internal combustion engines. Comparisons between the power of the Stirling engine and the power of the new engine have been performed for the same engine capacity, rotational frequency and maximum and minimum temperatures of the cycle. At the same minimum pressure of the working gas in both engines, the power of the EHV engine is several times higher than that of the Stirling engine, while, on the other hand, at the same maximum pressure of the working gas in both engines, the power of the EHV engine is 20 per cent higher than that of the Stirling engine power. The efficiencies of both engines do not differ significantly from each other.


Author(s):  
Michael Landthaler ◽  
Diether Haina ◽  
Christoph Ohngemach ◽  
Wilhelm Waidelich ◽  
O. Braun-Falco

1984 ◽  
Vol 2 (2) ◽  
pp. 201-211 ◽  
Author(s):  
A. K. Chung ◽  
M. A. Prelas

A novel method of utilizing fluorescence generated from the products of nuclear reactions offers the prospect of compact, high efficiency, multi-megajoule lasers. To overcome the problems associated with traditional laser (or energy converter)-fissile material interfaces, such as a uranium coating (low power density and low efficiency) or a gaseous uranium compound (low power density and deleterious effects on the laser kinetics and photon transport), a method suggested elsewhere of employing a reactor using a uranium aerosol fuel, interspersed with a fluorescer medium, is briefly reviewed. The charged particles produced by nuclear reactions in the fuel produce fluorescence in the core region of the reactor, through interactions with the fluorescer. This fluorescence can then be concentrated, to increase the effective power density in the laser medium, and used to drive a photolytic laser.One key issue in the above process is the charged particle spectrum from the fissile aerosol. These issues can be addressed theoretically based on the Dirac chord length distribution technique and an Arcen's function. The charged particle spectrum from a UO2 coating has been generated and benchmarked with the experimental data of Kahn et al., and Redmond et al. Agreement is generally good except near the end of the fission fragment tracks. The validity of this simple technique in approximating the rate of ion energy loss lends confidence to the generation of fission fragment spectra for other geometries (i.e. spherical in which transport efficiencies of over 60% appear achievable) using U, UO2 and U3O8. Work is also extended to the case of B-10 in a variety of configurations which are frequently used in modern energy conversion experimental devices.


Sign in / Sign up

Export Citation Format

Share Document