scholarly journals Experimental Model of Intervertebral Disk Mediated Postoperative Epidural Fibrosis

2016 ◽  
Vol 23 (2) ◽  
pp. 76-80 ◽  
Author(s):  
Sergey N. Larionov ◽  
V.A. Sorokovikov ◽  
K.C. Erdyneyev ◽  
S.A. Lepekhova ◽  
O.A. Goldberg
2018 ◽  
Vol 117 ◽  
pp. e403-e410 ◽  
Author(s):  
Huseyin Bozkurt ◽  
Emel Cicek Bozkurt ◽  
Hulya Ozpinar ◽  
Densel Arac ◽  
Ismail Kaya ◽  
...  

Author(s):  
Zahir Kizilay ◽  
Nesibe Kahraman Cetin ◽  
Abdullah Topcu ◽  
Ozgur Ismailoglu ◽  
Imran Kurt Omurlu ◽  
...  

1992 ◽  
Vol 73 (2) ◽  
pp. S26-S32 ◽  
Author(s):  
A. Pedrini-Mille ◽  
J. A. Maynard ◽  
G. N. Durnova ◽  
A. S. Kaplansky ◽  
V. A. Pedrini ◽  
...  

The lumbar annuli of rats flown on COSMOS 2044 were compared with those of three control groups and a tail-suspension experimental model. The wet and dry weights of the annuli were significantly smaller (P less than 0.05) in the flight group than in three control groups. The collagen-to-proteoglycan ratio was significantly greater (P less than 0.001) in the flight group than in the three control groups, but there were no detectable changes in the relative proportions of type I and II collagen or in the number of pyridinoline cross-links. When the annuli were immersed in water for 2 h, more proteoglycans (P less than 0.001) leached from the annuli of flown rats than from the tissue of control animals, suggesting abnormal or smaller proteoglycans. Safranin-O indicated a normal spatial distribution of the proteoglycans within the annulus. Tail suspension did not affect the size of the annuli, but more proteoglycans (P less than 0.05) leached from the tissue of suspended animals than from the normal annuli. The reasons for smaller disks and the abnormal ratio between the fibrous collagenous network and the proteoglycan gel in the flight group are unknown at this time. It is, however, probable that these changes may affect the biomechanical functions of the annulus, although they may be temporary and totally reversible if injuries are avoided in the interim period.


Author(s):  
Waykin Nopanitaya ◽  
Raeford E. Brown ◽  
Joe W. Grisham ◽  
Johnny L. Carson

Mammalian endothelial cells lining hepatic sinusoids have been found to be widely fenestrated. Previous SEM studies (1,2) have noted two general size catagories of fenestrations; large fenestrae were distributed randomly while the small type occurred in groups. These investigations also reported that large fenestrae were more numerous and larger in the endothelial cells at the afferent ends of sinusoids or around the portal areas, whereas small fenestrae were more numerous around the centrilobular portion of the hepatic lobule. It has been further suggested that under some physiologic conditions small fenestrae could fuse and subsequently become the large type, but this is, as yet, unproven.We have used a reproducible experimental model of hypoxia to study the ultrastructural alterations in sinusoidal endothelial fenestrations in order to investigate the origin of occurrence of large fenestrae.


2019 ◽  
Vol 24 (5) ◽  
pp. 14-15
Author(s):  
Jay Blaisdell ◽  
James B. Talmage

Abstract Ratings for “non-specific chronic, or chronic reoccurring, back pain” are based on the diagnosis-based impairment method whereby an impairment class, usually representing a range of impairment values within a cell of a grid, is selected by diagnosis and “specific criteria” (key factors). Within the impairment class, the default impairment value then can be modified using non-key factors or “grade modifiers” such as functional history, physical examination, and clinical studies using the net adjustment formula. The diagnosis of “nonspecific chronic, or chronic reoccurring, back pain” can be rated in class 0 and 1; the former has a default value of 0%, and the latter has a default value of 2% before any modifications. The key concept here is that the physician believes that the patient is experiencing pain, yet there are no related objective findings, most notably radiculopathy as distinguished from “nonverifiable radicular complaints.” If the individual is found not to have radiculopathy and the medical record shows that the patient has never had clinically verifiable radiculopathy, then the diagnosis of “intervertebral disk herniation and/or AOMSI [alteration of motion segment integrity] cannot be used.” If the patient is asymptomatic at maximum medical improvement, then impairment Class 0 should be chosen, not Class 1; a final whole person impairment rating of 1% indicates incorrect use of the methodology.


2004 ◽  
Vol 9 (5) ◽  
pp. 1-11
Author(s):  
Patrick R. Luers

Abstract The AMA Guides to the Evaluation of Permanent Impairment (AMA Guides), Fifth Edition, defines a motion segment as “two adjacent vertebrae, the intervertebral disk, the apophyseal or facet joints, and ligamentous structures between the vertebrae.” The range of motion from segment to segment varies, and loss of motion segment integrity is defined as “an anteroposterior motion of one vertebra over another that is greater than 3.5 mm in the cervical spine, greater than 2.5 mm in the thoracic spine, and greater than 4.5 mm in the lumbar spine.” Multiple etiologies are associated with increased motion in the cervical spine; some are physiologic or compensatory and others are pathologic. The standard radiographic evaluation of instability and ligamentous injury in the cervical spine consists of lateral flexion and extension x-ray views, but no single pattern of injury is identified in whiplash injuries. Fluoroscopy or cineradiographic techniques may be more sensitive than other methods for evaluating subtle abnormal motion in the cervical spine. The increased motion thus detected then must be evaluated to determine whether it represents normal physiologic motion, normal compensatory motion, motion related to underlying degenerative disk and/or facet disease, or increased motion related to ligamentous injury. Imaging studies should be performed and interpreted as instructed in the AMA Guides.


2003 ◽  
Vol 2 (1) ◽  
pp. 33-34
Author(s):  
B SHIVALKAR ◽  
B MEURIS ◽  
R VANBENEDEN ◽  
J KETESLEGERS ◽  
F BECKERS ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document