Taste Receptors in Upper Airway Immunity

Author(s):  
Ryan M. Carey ◽  
Robert J. Lee ◽  
Noam A. Cohen
Keyword(s):  
2018 ◽  
Vol 2018 ◽  
pp. 1-8 ◽  
Author(s):  
Neil N. Patel ◽  
Alan D. Workman ◽  
Noam A. Cohen

Evidence is emerging that shows taste receptors serve functions outside of taste sensation of the tongue. Taste receptors have been found in tissue across the human body, including the gastrointestinal tract, bladder, brain, and airway. These extraoral taste receptors appear to be important in modulating the innate immune response through detection of pathogens. This review discusses taste receptor signaling, focusing on the G-protein–coupled receptors that detect bitter and sweet compounds in the upper airway epithelium. Emphasis is given to recent studies which link the physiology of sinonasal taste receptors to clinical manifestation of upper airway disease.


2015 ◽  
Vol 15 (12) ◽  
Author(s):  
Alan D. Workman ◽  
James N. Palmer ◽  
Nithin D. Adappa ◽  
Noam A. Cohen

2019 ◽  
Vol 44 (7) ◽  
pp. 483-495 ◽  
Author(s):  
Jingguo Chen ◽  
Eric D Larson ◽  
Catherine B Anderson ◽  
Pratima Agarwal ◽  
Daniel N Frank ◽  
...  

Abstract Some bitter taste receptors (TAS2R gene products) are expressed in the human sinonasal cavity and may function to detect airborne irritants. The expression of all 25 human bitter taste receptors and their location within the upper airway is not yet clear. The aim of this study is to characterize the presence and distribution of TAS2R transcripts and solitary chemosensory cells (SCCs) in different locations of the human sinonasal cavity. Biopsies were obtained from human subjects at up to 4 different sinonasal anatomic sites. PCR, microarray, and qRT-PCR were used to examine gene transcript expression. The 25 human bitter taste receptors as well as the sweet/umami receptor subunit, TAS1R3, and canonical taste signaling effectors are expressed in sinonasal tissue. All 25 human bitter taste receptors are expressed in the human upper airway, and expression of these gene products was higher in the ethmoid sinus than nasal cavity locations. Fluorescent in situ hybridization demonstrates that epithelial TRPM5 and TAS2R38 are expressed in a rare cell population compared with multiciliated cells, and at times, consistent with SCC morphology. Secondary analysis of published human sinus single-cell RNAseq data did not uncover TAS2R or canonical taste transduction transcripts in multiciliated cells. These findings indicate that the sinus has higher expression of SCC markers than the nasal cavity in chronic rhinosinusitis patients, comprising a rare cell type. Biopsies obtained from the ethmoid sinus may serve as the best location for study of human upper airway taste receptors and SCCs.


Author(s):  
Jenna R. Freund ◽  
Robert J. Lee
Keyword(s):  

Nutrients ◽  
2019 ◽  
Vol 11 (9) ◽  
pp. 2017 ◽  
Author(s):  
Ryan M. Carey ◽  
Robert J. Lee

Taste receptors, first identified on the tongue, are best known for their role in guiding our dietary preferences. The expression of taste receptors for umami, sweet, and bitter have been demonstrated in tissues outside of the oral cavity, including in the airway, brain, gastrointestinal tract, and reproductive organs. The extra-oral taste receptor chemosensory pathways and the endogenous taste receptor ligands are generally unknown, but there is increasing data suggesting that taste receptors are involved in regulating some aspects of innate immunity, and may potentially control the composition of the nasal microbiome in healthy individuals or patients with upper respiratory diseases like chronic rhinosinusitis (CRS). For this reason, taste receptors may serve as potential therapeutic targets, providing alternatives to conventional antibiotics. This review focuses on the physiology of sweet (T1R) and bitter (T2R) taste receptors in the airway and their activation by secreted bacterial products. There is particular focus on T2R38 in sinonasal ciliated cells, as well as the sweet and bitter receptors found on specialized sinonasal solitary chemosensory cells. Additionally, this review explores the impact of genetic variations in these receptors on the differential susceptibility of patients to upper airway infections, such as CRS.


2020 ◽  
Vol 5 (2) ◽  
pp. 439-456
Author(s):  
Jenny L. Pierce

Purpose This review article provides an overview of autoimmune diseases and their effects on voice and laryngeal function. Method A literature review was conducted in PubMed. Combinations of the following keywords were used: “autoimmune disease and upper airway,” “larynx,” “cough,” “voice,” “dysphonia,” and “dyspnea.” Precedence was given to articles published in the past 10 years due to recent advances in this area and to review articles. Ultimately, 115 articles were included for review. Results Approximately 81 autoimmune diseases exist, with 18 of those highlighted in the literature as having laryngeal involvement. The general and laryngeal manifestations of these 18 are discussed in detail, in addition to the clinical implications for a laryngeal expert. Conclusions Voice, breathing, and cough symptoms may be an indication of underlying autoimmune disease. However, these symptoms are often similar to those in the general population. Appropriate differential diagnosis and timely referral practices maximize patient outcomes. Guidelines are provided to facilitate correct diagnosis when an autoimmune disease is suspected.


2020 ◽  
Vol 5 (6) ◽  
pp. 1469-1481 ◽  
Author(s):  
Joseph A. Napoli ◽  
Carrie E. Zimmerman ◽  
Linda D. Vallino

Purpose Craniofacial anomalies (CFA) often result in growth abnormalities of the facial skeleton adversely affecting function and appearance. The functional problems caused by the structural anomalies include upper airway obstruction, speech abnormalities, feeding difficulty, hearing deficits, dental/occlusal defects, and cognitive and psychosocial impairment. Managing disorders of the craniofacial skeleton has been improved by the technique known as distraction osteogenesis (DO). In DO, new bone growth is stimulated allowing bones to be lengthened without need for bone graft. The purpose of this clinical focus article is to describe the technique and clinical applications and outcomes of DO in CFA. Conclusion Distraction can be applied to various regions of the craniofacial skeleton to correct structure and function. The benefits of this procedure include improved airway, feeding, occlusion, speech, and appearance, resulting in a better quality of life for patients with CFA.


2009 ◽  
Vol 18 (1) ◽  
pp. 3-12
Author(s):  
Andrea Vovka ◽  
Paul W. Davenport ◽  
Karen Wheeler-Hegland ◽  
Kendall F. Morris ◽  
Christine M. Sapienza ◽  
...  

Abstract When the nasal and oral passages converge and a bolus enters the pharynx, it is critical that breathing and swallow motor patterns become integrated to allow safe passage of the bolus through the pharynx. Breathing patterns must be reconfigured to inhibit inspiration, and upper airway muscle activity must be recruited and reconfigured to close the glottis and laryngeal vestibule, invert the epiglottis, and ultimately protect the lower airways. Failure to close and protect the glottal opening to the lower airways, or loss of the integration and coordination of swallow and breathing, increases the risk of penetration or aspiration. A neural swallow central pattern generator (CPG) controls the pharyngeal swallow phase and is located in the medulla. We propose that this swallow CPG is functionally organized in a holarchical behavioral control assembly (BCA) and is recruited with pharyngeal swallow. The swallow BCA holon reconfigures the respiratory CPG to produce the stereotypical swallow breathing pattern, consisting of swallow apnea during swallowing followed by prolongation of expiration following swallow. The timing of swallow apnea and the duration of expiration is a function of the presence of the bolus in the pharynx, size of the bolus, bolus consistency, breath cycle, ventilatory state and disease.


Sign in / Sign up

Export Citation Format

Share Document