scholarly journals Anti-Cancer Effects of Paris Polyphylla Ethanol Extract by Inducing Cancer Cell Apoptosis and Cycle Arrest in Prostate Cancer Cells

2017 ◽  
Vol 11 (3) ◽  
pp. 144-150 ◽  
Author(s):  
Denglu Zhang ◽  
Kailin Li ◽  
Chao Sun ◽  
Guangshang Cao ◽  
Yuanfu Qi ◽  
...  

Objective: To evaluate the potential anti-prostate cancer effects of Paris polyphylla ethanol extract (PPEE) and its underlying mechanisms. Materials and Methods: The anti-proliferation activity of PPEE was tested on PC3 and DU145 cells using Cell Counting Kit-8 assay. The pro-apoptotic and cell cycle arrest effects of PPEE were confirmed by flow cytometry. Apoptosis of prostate cancer cells was induced by PPEE through endogenous and exogenous pathways. A mouse xenograft model was used to examine its anti-prostate cancer effects in vivo. Results: We found that the IC50 of PPEE on PC3 cells was 3.98 µg/ml and the IC50 of PPEE on DU145 cells was 8 µg/ml. PPEE induced prostate cancer cell apoptosis in a concentration dependent manner, through endogenous and exogenous pathways. PPEE induced PC3 cell cycle arrest in G0/G1 and G2/M phases, while in DU145cell it induced cell arrest in the G0/G1 phase. PPEE inhibited the growth of prostate cancer cells in vivo. Conclusion: PPEE could inhibit prostate cancer growth in vitro and in vivo, induce apoptosis of prostate cancer cells, and cause cell cycle arrest, which laid the foundation for further research on the anti-tumor mechanism of PPEE.

2019 ◽  
Vol 2019 ◽  
pp. 1-11 ◽  
Author(s):  
Sooyeon Kang ◽  
Hyo In Kim ◽  
Yu-Jeong Choi ◽  
Seul Ki Lee ◽  
Ji Hye Kim ◽  
...  

Dysregulated lipid metabolism is a prominent feature of prostate cancers (PCas); several enzymes involved in lipid accumulation are highly expressed. Here, we elucidated efficacy of TJ001, a traditional herbal decoction, in inhibiting de novo lipogenesis. TJ001 had significant cytotoxicity against DU145 but not PC3 and LNCaP cells and, similarly, TJ001 markedly AMPK phosphorylation only in DU145 cells. This was accompanied by the downregulation of phosphorylated-acetyl coenzyme A carboxylase (ACC) expression and sterol regulatory element-binding protein 1 (SREBP1) proteolytic cleavage, thereby inhibiting its role as a transcription factor to induce lipid biosynthesis. When Oil Red O staining was performed, it is reflected in the reduction of lipid droplets (LDs). TJ001 also induced G1/S cell cycle arrest via a cell cycle inhibitor (CKI) p21WAF1/CIP1 upregulation. Although p53 proteins remained unchanged, both cyclin E and cyclin D1 were decreased. Moreover, TJ001 suppressed the mammalian target of rapamycin (mTOR) signaling pathway. Generally, the prolonged G1/S phase arrest accompanies apoptosis, but TJ001 failed to work as a trigger apoptosis in DU145 cells. We showed that mutant p53 proteins were required for the survival of DU145 cells. In presence of TJ001, inhibition of endogenous mutant p53 by RNAi led to cell viability reduction and induction of the p-AMPK/AMPK ratio. In addition, it induced apoptotic cell death in DU145 cells. At the cellular level, induction of PARP, caspase-3, and caspase-9 cleavages was observed, and caspase-3 activity was increased in the p53 knockdown cells treated with TJ001. Taken together, we demonstrated that TJ001 inhibited cell growth in DU145 prostate cancer cells as indicated by blocking lipogenesis and induction in G1/S cell cycle arrest. In addition, we may provide an evidence that mutant p53 protein has potential role as an oncogenic action in DU145 cells. Collectively, the combination of mutant p53 targeting and TJ001 treatment resulted in decreased cell growth in DU145 cells.


Oncotarget ◽  
2017 ◽  
Vol 9 (13) ◽  
pp. 10962-10977 ◽  
Author(s):  
David W. McIlwain ◽  
Melissa L. Fishel ◽  
Alexander Boos ◽  
Mark R. Kelley ◽  
Travis J. Jerde

Nutrients ◽  
2020 ◽  
Vol 12 (2) ◽  
pp. 488 ◽  
Author(s):  
Yeong-Seon Won ◽  
Kwon-Il Seo

Prostate cancer is the most common cancer in Western countries. Recently, Asian countries are being affected by Western habits, which have had an important role in the rapid increase in cancer incidence. Sanggenol L (San L) is a natural flavonoid present in the root barks of Morus alba, which induces anti-cancer activities in ovarian cancer cells. However, the molecular and cellular mechanisms of the effects of sanggenol L on human prostate cancer cells have not been elucidated. In this study, we investigated whether sanggenol L exerts anti-cancer activity in human prostate cancer cells via apoptosis and cell cycle arrest. Sanggenol L induced caspase-dependent apoptosis (up-regulation of PARP and Bax or down-regulation of procaspase-3, -8, -9, Bid, and Bcl-2), induction of caspase-independent apoptosis (up-regulation of AIF and Endo G on cytosol), suppression of cell cycle (down-regulation of CDK1/2, CDK4, CDK6, cyclin D1, cyclin E, cyclin A, and cyclin B1 or up-regulation of p53 and p21), and inhibition of PI3K/Akt/mTOR signaling (down-regulation of PI3K, p-Akt, and p-mTOR) in prostate cancer cells. These results suggest the induction of apoptosis via suppression of PI3K/Akt/mTOR signaling and cell cycle arrest via activation of p53 in response to sanggenol L in prostate cancer cells.


Sign in / Sign up

Export Citation Format

Share Document