scholarly journals Long Non-Coding RNA BANCR Promotes Endometrial Cancer Cell Proliferation and Invasion by Regulating MMP2 and MMP1 via ERK/MAPK Signaling Pathway

2016 ◽  
Vol 40 (3-4) ◽  
pp. 644-656 ◽  
Author(s):  
Danni Wang ◽  
Danbo Wang ◽  
Ning Wang ◽  
Zaiqiu Long ◽  
Xuemei Ren

Background/Aims: Microarray screening had found BRAF-activated non-coding RNA (BANCR) was significantly upregulated in type 1 endometrial cancer (EC). This study aimed to assess the potential role of long non-coding RNA (lncRNA) BANCR in the pathogenesis and progression of type 1 EC. Methods: Quantitative reverse transcription polymerase chain reaction (qRT-PCR) was used to confirm the expression of BANCR in type 1 EC tissue, and analyze its clinical significance. In vitro, RNA interference (siRNA) was used to investigate the biological role of BANCR in type 1 EC. Results: qRT-PCR revealed that the expression of lncRNA BANCR was higher in type 1 EC (P<0.01). BANCR expression was significantly correlated with FIGO stage, pathological grade, myometrial invasion, and lymph node metastasis. The expression of BANCR was significantly correlated with that of MMP2/MMP1. In vitro, knockdown of BANCR significantly suppressed proliferation, migration, and invasion of Ishikawa and HEC-1A cells, and significantly inhibited the ERK/MAPK signaling pathway that decreased MMP2 and MMP1 expression. Conclusion: BANCR is highly expressed in type 1 EC tissue and promotes EC-cell proliferation, migration, and invasion by activating ERK/MAPK signaling pathway that regulates MMP2/MMP1 expression. BANCR is expected to become a prognostic marker and therapeutic target in type 1 EC.

Author(s):  
Shan Lei ◽  
Zhiwei He ◽  
Tengxiang Chen ◽  
Xingjun Guo ◽  
Zhirui Zeng ◽  
...  

Abstract Background Accumulation evidence indicates the vital role of long non-coding RNAs (lncRNAs) in tumorigenesis and the progression of malignant tumors, including pancreatic cancer (PC). However, the role and the molecular mechanism of long non-coding RNA 00976 is unclear in pancreatic cancer. Methods In situ hybridization (ISH) and qRT-PCR was performed to investigate the association between linc00976 expression and the clinicopathological characteristics and prognosis of patients with PC. Subsequently, linc00976 over-expression vector and shRNAs were transfected into PC cells to up-regulate or down-regulate linc00976 expression. Loss- and gain-of function assays were performed to investigate the role of linc00976 in proliferation and metastasis in vitro and vivo. ITRAQ, bioinformatic analysis and rescue assay were used to illustrate the ceRNA mechanism network of linc00976/miR-137/OTUD7B and its downstream EGFR/MAPK signaling pathway. Results linc00976 expression was overexpressed in PC tissues and cell lines and was positively associated with poorer survival in patients with PC. Function studies revealed that linc00976 knockdown significantly suppressed cell proliferation, migration and invasion in vivo and in vitro, whereas its overexpression reversed these effects. Based on Itraq results and online database prediction, Ovarian tumor proteases OTUD7B was found as a downstream gene of linc00976, which deubiquitinated EGFR mediates MAPK signaling activation. Furthermore, Bioinformatics analysis and luciferase assays and rescue experiments revealed that linc00976/miR137/OTUD7B established the ceRNA network modulating PC cell proliferation and tumor growth. Conclusion The present study demonstrates that linc00976 enhances the proliferation and invasion ability of PC cells by upregulating OTUD7B expression, which was a target of miR-137. Ultimately, OTUD7B mediates EGFR and MAPK signaling pathway, suggesting that linc00976/miR-137/OTUD7B/EGFR axis may act as a potential biomarker and therapeutic target for PC.


2017 ◽  
Vol 14 (3) ◽  
pp. 2831-2837 ◽  
Author(s):  
Han Bao ◽  
Chun-Guang Guo ◽  
Peng-Cheng Qiu ◽  
Xin-Lei Zhang ◽  
Qi Dong ◽  
...  

2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Shu-Juan Xie ◽  
Li-Ting Diao ◽  
Nan Cai ◽  
Li-Ting Zhang ◽  
Sha Xiang ◽  
...  

AbstractMALAT1-associated small cytoplasmic RNA (mascRNA) is a cytoplasmic tRNA-like small RNA derived from nucleus-located long noncoding RNA (lncRNA) metastasis-associated lung adenocarcinoma transcript 1 (MALAT1). While MALAT1 was extensively studied and was found to function in multiple cellular processes, including tumorigenesis and tumor progression, the role of mascRNA was largely unknown. Here we show that mascRNA is upregulated in multiple cancer cell lines and hepatocellular carcinoma (HCC) clinical samples. Using HCC cells as model, we found that mascRNA and its parent lncRNA MALAT1 can both promote cell proliferation, migration, and invasion in vitro. Correspondingly, both of them can enhance the tumor growth in mice subcutaneous tumor model and can promote metastasis by tail intravenous injection of HCC cells. Furthermore, we revealed that mascRNA and MALAT1 can both activate ERK/MAPK signaling pathway, which regulates metastasis-related genes and may contribute to the aggressive phenotype of HCC cells. Our results indicate a coordination in function and mechanism of mascRNA and MALAT1 during development and progress of HCC, and provide a paradigm for deciphering tRNA-like structures and their parent transcripts in mammalian cells.


2021 ◽  
Vol 11 ◽  
Author(s):  
Weiguo Xu ◽  
Bin Zhou ◽  
Juan Wang ◽  
Li Tang ◽  
Qing Hu ◽  
...  

Transfer RNA-derived RNA fragments (tRFs) belong to non-coding RNAs (ncRNAs) discovered in most carcinomas. Although some articles have demonstrated the characteristics of tRFs in gastric carcinoma (GC), the underlying mechanisms still need to be elucidated. Meanwhile, it was reported that the MAPK pathway was momentous in GC progression. Thus we focused on investigating whether tRF-Glu-TTC-027 could act as a key role in the progression of GC with the regulation of the MAPK pathway. We collected the data of the tRNA-derived fragments expression profile from six paired clinical GC tissues and corresponding adjacent normal samples in this study. Then we screened tRF-Glu-TTC-027 for analysis by using RT-PCR. We transfected GC cell lines with tRF-Glu-TTC-027 mimics or mimics control. Then the proliferation, migration, and invasion assays were performed to assess the influence of tRF-Glu-TTC-027 on GC cell lines. Fluorescence in situ hybridization assay was conducted to confirm the cell distribution of tRF-Glu-TTC-027. We confirmed the mechanism that tRF-Glu-TTC-027 influenced the MAPK signaling pathway and observed a strong downregulation of tRF-Glu-TTC-027 in clinical GC samples. Overexpression of tRF-Glu-TTC-027 suppressed the malignant activities of GC in vitro and in vivo. MAPK signaling pathway was confirmed to be a target pathway of tRF-Glu-TTC-027 in GC by western blot. This is the first study to show that tRF-Glu-TTC-027 was a new tumor-suppressor and could be a potential object for molecular targeted therapy in GC.


Sign in / Sign up

Export Citation Format

Share Document