scholarly journals Integrative Research of Induction of Pluripotent Stem Cells

2017 ◽  
Vol 4 (3-4) ◽  
pp. 115-124 ◽  
Author(s):  
Penglin Gao ◽  
Chuanhe Sun ◽  
Weilong Liao ◽  
Wenfei Jiang ◽  
Te Liu ◽  
...  

Since the Japanese scientist Shinya Yamanaka used a viral vector to transfer the combination of 4 factors into differentiated somatic cells and reprogramed them to obtain similar embryonic stem cells and induced pluripotent stem cells (iPSCs), it provided one integrative method for studying many medical fields. Patient-derived iPSCs have provided an opportunity to study human diseases for which no suitable model systems are available. iPSC technology has since become a major breakthrough in the field of stem cell research. With the continuous development of iPSC technology and the continuous improvement of technical levels, excellent advances have become more and more common in the basic research and medical fields of life sciences. This article reviews the development history, clinical application, and problems and prospects of iPSC, and focuses on the application of iPSC in neurological diseases.

2020 ◽  
Vol 2020 ◽  
pp. 1-9
Author(s):  
Debora Salerno ◽  
Alessandro Rosa

Human pluripotent stem cells (PSCs), including embryonic stem cells and induced pluripotent stem cells, represent powerful tools for disease modeling and for therapeutic applications. PSCs are particularly useful for the study of development and diseases of the nervous system. However, generating in vitro models that recapitulate the architecture and the full variety of subtypes of cells that make the complexity of our brain remains a challenge. In order to fully exploit the potential of PSCs, advanced methods that facilitate the identification of molecular signatures in neural differentiation and neurological diseases are highly demanded. Here, we review the literature on the development and application of digital color-coded molecular barcoding as a potential tool for standardizing PSC research and applications in neuroscience. We will also describe relevant examples of the use of this technique for the characterization of the heterogeneous composition of the brain tumor glioblastoma multiforme.


2017 ◽  
Vol 4 (S) ◽  
pp. 96
Author(s):  
Oanh Thuy Huynh ◽  
Mai Thi-Hoang Truong ◽  
Phuc Van Pham

Background: Embryonic stem cells are pluripotent, thus capable of differentiating into all types of cells derived from the three germ layers. However, the application of embryonic stem cells (ESCs) for preclinical and clinical studies is difficult due to ethical concerns. Induced pluripotent stem cells (iPSCs) are derived from differentiation and have many ESC characteristics. The study herein examines the production of iPSCs from reprogramming of mouse embryonic fibroblasts (MEFs) via transduction with defined factors.  Methods: MEFs were collected from mouse embryos via a previously published protocol. The cells were transduced with a single polycistronic viral vector encoding mouse cDNAs of Oct3/4, Sox2, Klf4 and c-Myc. Transduced cells were treated and sub- cultured with ESC medium. The cells were evaluated as iPSCs with specific morphology, and expression SSEA-1, Oct3/4, Sox2 and Nanog. In addition, they were also evaluated for pluripotency by assessing alkaline phosphatase (AP) activity and in vivo teratoma formation.  Results: Under the reprogrammed conditions, the transduced cells displayed a change in morphology, forming ESC-like clusters. These cell clusters strongly expressed pluripotent markers as well as ESC-specific genes. Furthermore, the colonies exhibited higher AP activity and formed teratomas when injected into the murine testis.  Conclusion: The study herein suggests that MEFs can be reprogrammed into iPSCs using a polycistronic viral vector encoding mouse cDNAs for Oct3/4, Sox2, Klf4 and c- Myc


2017 ◽  
Vol 4 (01) ◽  
pp. 159 ◽  
Author(s):  
Oanh Thuy Huynh ◽  
Mai Thi-Hoang Truong ◽  
Phuc Van Pham

Introduction: Embryonic stem cells are pluripotent, thus capable of differentiating into all types of cells derived from the three germ layers. However, the application of embryonic stem cells (ESCs) for preclinical and clinical studies is difficult due to ethical concerns. Induced pluripotent stem cells (iPSCs) are derived from differentiation and have many ESC characteristics. The study herein examines the production of iPSCs from reprogramming of mouse embryonic fibroblasts (MEFs) via transduction with defined factors. Methods: MEFs were collected from mouse embryos via a previously published protocol. The cells were transduced with a single polycistronic viral vector encoding mouse cDNAs of Oct3/4, Sox2, Klf4 and c-Myc. Transduced cells were treated and sub-cultured with ESC medium. The cells were evaluated as iPSCs with specific morphology, and expression SSEA-1, Oct3/4, Sox2 and Nanog. In addition, they also were evaluated for pluripotency by assessing alkaline phosphatase (AP) activity and in vivo teratoma formation. Results: Under the reprogrammed conditions, the transduced cells displayed a change in morphology, forming ESC-like clusters. These cell clusters strongly expressed pluripotent markers as well as ESC-specific genes. Furthermore, the colonies exhibited higher AP activity and formed teratomas when injected into the murine testis. Conclusions: The study herein suggests that MEFs can be reprogrammed into iPSCs using a polycistronic viral vector encoding mouse cDNAs for Oct3/4, Sox2, Klf4 and c-Myc.  


Author(s):  
John C. Lucchesi

Four core transcription factors known to maintain the pluripotent state in embryonic stem cells (ESCs)—Oct4, Sox2, Klf4 and c-Myc—were used to induce pluripotent stem cells in adult-derived fibroblasts. Induced pluripotent stem cells (iPSCs), like ESCs, have less condensed and more transcriptionally active chromatin than differentiated cells. The number of genes with bivalent promoter marks increases during reprogramming, reflecting the switch of differentiation-specific active genes to an inactive, but poised, status. The levels of DNA methyl transferases and demethylases are increased, underlying the changes in the pattern of DNA methylation that occur late during reprogramming. The potential therapeutic applications of iPSCs include reprogramming a patient’s own cells to avoid the problem of rejection following injection to restore tissue or organ function. iPSCs derived from individuals at risk of developing late-onset neurological diseases could be differentiated in culture to predict the future occurrence of the disease. Caveats involve the fact that long-term culturing often results in genomic mutations that may, by chance, involve tumor suppressors or oncogenes.


Acta Naturae ◽  
2017 ◽  
Vol 9 (3) ◽  
pp. 39-47 ◽  
Author(s):  
А. V. Selenina ◽  
А. S. Tsimokha ◽  
А. N. Tomilin

Embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs) are subjects of high interest not only in basic research, but also in various applied fields, particularly, in regenerative medicine. Despite the tremendous interest to these cells, the molecular mechanisms that control protein homeostasis in these cells remain largely unknown. The ubiquitin-proteasome system (UPS) acts via post-translational protein modifications and protein degradation and, therefore, is involved in the control of virtually all cellular processes: cell cycle, self-renewal, signal transduction, transcription, translation, oxidative stress, immune response, apoptosis, etc. Therefore, studying the biological role and action mechanisms of the UPS in pluripotent cells will help to better understand the biology of cells, as well as to develop novel approaches for regenerative medicine.


2020 ◽  
Vol 15 (4) ◽  
pp. 301-307 ◽  
Author(s):  
Gaifang Wang ◽  
Maryam Farzaneh

Primary Ovarian Insufficiency (POI) is one of the main diseases causing female infertility that occurs in about 1% of women between 30-40 years of age. There are few effective methods for the treatment of women with POI. In the past few years, stem cell-based therapy as one of the most highly investigated new therapies has emerged as a promising strategy for the treatment of POI. Human pluripotent stem cells (hPSCs) can self-renew indefinitely and differentiate into any type of cell. Human Embryonic Stem Cells (hESCs) as a type of pluripotent stem cells are the most powerful candidate for the treatment of POI. Human-induced Pluripotent Stem Cells (hiPSCs) are derived from adult somatic cells by the treatment with exogenous defined factors to create an embryonic-like pluripotent state. Both hiPSCs and hESCs can proliferate and give rise to ectodermal, mesodermal, endodermal, and germ cell lineages. After ovarian stimulation, the number of available oocytes is limited and the yield of total oocytes with high quality is low. Therefore, a robust and reproducible in-vitro culture system that supports the differentiation of human oocytes from PSCs is necessary. Very few studies have focused on the derivation of oocyte-like cells from hiPSCs and the details of hPSCs differentiation into oocytes have not been fully investigated. Therefore, in this review, we focus on the differentiation potential of hPSCs into human oocyte-like cells.


2009 ◽  
Vol 1 (1) ◽  
pp. 76-82 ◽  
Author(s):  
Mark Denham ◽  
Jessie Leung ◽  
Cheryl Tay ◽  
Raymond C.B. Wong ◽  
Peter Donovan ◽  
...  

2021 ◽  
Vol 22 (9) ◽  
pp. 5011
Author(s):  
Daehwan Kim ◽  
Sangho Roh

Stem cell research is essential not only for the research and treatment of human diseases, but also for the genetic preservation and improvement of animals. Since embryonic stem cells (ESCs) were established in mice, substantial efforts have been made to establish true ESCs in many species. Although various culture conditions were used to establish ESCs in cattle, the capturing of true bovine ESCs (bESCs) has not been achieved. In this review, the difficulty of establishing bESCs with various culture conditions is described, and the characteristics of proprietary induced pluripotent stem cells and extended pluripotent stem cells are introduced. We conclude with a suggestion of a strategy for establishing true bESCs.


Author(s):  
Anja Trillhaase ◽  
Marlon Maertens ◽  
Zouhair Aherrahrou ◽  
Jeanette Erdmann

AbstractStem cell technology has been around for almost 30 years and in that time has grown into an enormous field. The stem cell technique progressed from the first successful isolation of mammalian embryonic stem cells (ESCs) in the 1990s, to the production of human induced-pluripotent stem cells (iPSCs) in the early 2000s, to finally culminate in the differentiation of pluripotent cells into highly specialized cell types, such as neurons, endothelial cells (ECs), cardiomyocytes, fibroblasts, and lung and intestinal cells, in the last decades. In recent times, we have attained a new height in stem cell research whereby we can produce 3D organoids derived from stem cells that more accurately mimic the in vivo environment. This review summarizes the development of stem cell research in the context of vascular research ranging from differentiation techniques of ECs and smooth muscle cells (SMCs) to the generation of vascularized 3D organoids. Furthermore, the different techniques are critically reviewed, and future applications of current 3D models are reported. Graphical abstract


Sign in / Sign up

Export Citation Format

Share Document