scholarly journals Cholecystokinin Expression in the Development of Postinfarction Heart Failure

2017 ◽  
Vol 43 (6) ◽  
pp. 2479-2488 ◽  
Author(s):  
Xiaoying Dong ◽  
Can Wang ◽  
Jingqi Zhang ◽  
Siyue Wang ◽  
Hongjian Li ◽  
...  

Background/Aims: Cholecystokinin (CCK) is expressed in cardiomyocytes and may also play an important role in cardiovascular regulation. Clinical studies have shown that plasma CCK levels are an independent marker of cardiovascular mortality in cardiac disease. However, whether the development of postinfarction heart failure is associated with changes in CCK expression is unknown. Methods: To investigate CCK expression patterns and the association between CCK expression and heart functional parameters, we randomized male Sprague-Dawley rats into myocardial infarction (MI) or sham operation (SO) groups. CCK expression levels were assessed by western blotting, immunohistochemistry, real-time polymerase chain reaction (PCR), and enzyme-linked immunosorbent assay (ELISA) at different time points (2, 4 or 6 weeks) after surgery. Brain natriuretic peptide (BNP) concentrations were determined using Western blotting and ELISA, myocardial morphology was assessed by microscopy. Results: Plasma CCK and BNP levels were significantly increased in all the MI groups compared with the corresponding SO groups. However, the degree to which myocardial CCK mRNA and protein expression levels were increased the MI groups compared with the SO groups was greater in the 4- and 6-week groups than in the 2-week group. Furthermore, plasma CCK levels were positively correlated with BNP concentrations and left ventricular end-systolic diameter (LVDs) and significantly negatively correlated with the ejection fraction (EF) and shortening fraction (SF) in model animals. Conclusions: Heart failure progression after infarction is associated with upregulated CCK levels; thus, CCK may be useful as a novel marker of heart failure.

2021 ◽  
Vol 129 (Suppl_1) ◽  
Author(s):  
Kana Shimizu ◽  
Masafumi Funamoto ◽  
Yoichi Sunagawa ◽  
Yasufumi Katanasaka ◽  
Yusuke Miyazaki ◽  
...  

Purpose: The cost of new drug development is increasing year by year, and drug repositioning is being used as a strategy to develop new treatments at low-cost. We used a library of approved drugs to screen for compounds that suppress cardiomyocyte hypertrophy, and identified as a candidate the antiplatelet drug sarpogrelate, a selective serotonin-2A (5-HT 2A ) receptor antagonist. In this study, we examined the effect of sarpogrelate on cultured cardiomyocyte hypertrophy and development of heart failure. Methods & Results: First, primary cultured cardiomyocytes were treated with 1 μM sarpogrelate and then stimulated with various hypertrophic stimuli (30 μM phenylephrine (PE), 0.1 μM angiotensin II and 0.1 μM endothelin 1). The results of immunofluorescence staining with anti-MHC antibody showed that sarpogrelate significantly suppressed cardiomyocyte hypertrophy induced by each stimulus. Western blotting and qPCR analysis showed that the mRNA and protein levels of 5-HT 2A receptor did not change by PE, and sarpogrelate significantly suppressed PE-induced phosphorylation of ERK1/2 and GATA4. Next, C57BL/6j male mice were subjected to a transverse aortic constriction (TAC) and sham operation. One day after the operation, the mice were randomly divided into 3 groups: sarpogrelate at 1 mg/kg or 5 mg/kg, and vehicle as a control. Daily oral administration was repeated for 8 weeks. Echocardiographic analysis showed that 5 mg/kg sarpogrelate significantly prevented a TAC-induced increase in posterior left ventricular wall thickness and a decrease in fractional shortening at 8 weeks after the operation. Five mg/kg sarpogrelate also suppressed TAC-induced increase in HW/BW ratio, cross-sectional areas, perivascular fibrosis, and mRNA levels of ANF and BNP. Moreover, the western blotting analysis showed that 5 mg/kg sarpogrelate significantly suppressed TAC-induced phosphorylation of ERK1/2. Conclusions: These results indicate that sarpogrelate significantly suppresses cardiomyocyte hypertrophy and the development of heart failure via at least, in part, by inhibition of ERK1/2-GATA4 pathway. These findings suggest that sarpogrelate may be an effective agent for heart failure therapy.


2015 ◽  
Vol 2015 ◽  
pp. 1-9 ◽  
Author(s):  
Julius Bogomolovas ◽  
Kathrin Brohm ◽  
Jelena Čelutkienė ◽  
Giedrė Balčiūnaitė ◽  
Daiva Bironaitė ◽  
...  

Progression of idiopathic dilated cardiomyopathy (IDCM) is marked with extensive left ventricular remodeling whose clinical manifestations and molecular basis are poorly understood. We aimed to evaluate the clinical potential of titin ligands in monitoring progression of cardiac remodeling associated with end-stage IDCM. Expression patterns of 8 mechanoptotic machinery-associated titin ligands (ANKRD1,ANKRD2,TRIM63,TRIM55,NBR1,MLP,FHL2, andTCAP) were quantitated in endomyocardial biopsies from 25 patients with advanced IDCM. When comparing NYHA disease stages, elevatedANKRD1expression levels marked transition from NYHA < IV to NYHA IV.ANKRD1expression levels closely correlated with systolic strain depression and short E wave deceleration time, as determined by echocardiography. On molecular level, myocardialANKRD1and serum adiponectin correlated with lowBAX/BCL-2ratios, indicative of antiapoptotic tissue propensity observed during the worsening of heart failure. ANKRD1 is a potential marker for cardiac remodeling and disease progression in IDCM.ANKRD1expression correlated with reduced cardiac contractility and compliance. The association ofANKRD1with antiapoptotic response suggests its role as myocyte survival factor during late stage heart disease, warranting further studies on ANKRD1 during end-stage heart failure.


2016 ◽  
Vol 311 (2) ◽  
pp. H337-H346 ◽  
Author(s):  
Hong Zheng ◽  
Xuefei Liu ◽  
Neeru M. Sharma ◽  
Kaushik P. Patel

Chronic activation of the sympathetic drive contributes to cardiac remodeling and dysfunction during chronic heart failure (HF). The present study was undertaken to assess whether renal denervation (RDN) would abrogate the sympathoexcitation in HF and ameliorate the adrenergic dysfunction and cardiac damage. Ligation of the left coronary artery was used to induce HF in Sprague-Dawley rats. Four weeks after surgery, RDN was performed, 1 wk before the final measurements. At the end of the protocol, cardiac function was assessed by measuring ventricular hemodynamics. Rats with HF had an average infarct area >30% of the left ventricle and left ventricular end-diastolic pressure (LVEDP) >20 mmHg. β1- and β2-adrenoceptor proteins in the left ventricle were reduced by 37 and 49%, respectively, in the rats with HF. RDN lowered elevated levels of urinary excretion of norepinephrine and brain natriuretic peptide levels in the hearts of rats with HF. RDN also decreased LVEDP to 10 mmHg and improved basal dP/d t to within the normal range in rats with HF. RDN blunted loss of β1-adrenoceptor (by 47%) and β2-adrenoceptor (by 100%) protein expression and improved isoproterenol (0.5 μg/kg)-induced increase in +dP/d t (by 71%) and −dP/d t (by 62%) in rats with HF. RDN also attenuated the increase in collagen 1 expression in the left ventricles of rats with HF. These findings demonstrate that RDN initiated in chronic HF condition improves cardiac function mediated by adrenergic agonist and blunts β-adrenoceptor expression loss, providing mechanistic insights for RDN-induced improvements in cardiac function in the HF condition.


2006 ◽  
Vol 291 (2) ◽  
pp. H797-H803 ◽  
Author(s):  
Karyn L. Butler ◽  
Lynn C. Huffman ◽  
Sheryl E. Koch ◽  
Harvey S. Hahn ◽  
Judith K. Gwathmey

The JAK-STAT pathway is activated in the early and late phases of ischemic preconditioning (IPC) in normal myocardium. The role of this pathway and the efficacy of IPC in hypertrophied hearts remain largely unknown. We hypothesized that phosphorylated STAT-3 (pSTAT-3) is necessary for effective IPC in pressure-overload hypertrophy. Male Sprague-Dawley rats 8 wk after thoracic aortic constriction (TAC) or sham operation underwent echocardiography and Langendorff perfusion. Randomized hearts were subjected to 30 min of global ischemia and 120 min of reperfusion with or without IPC in the presence or absence of the JAK-2 inhibitor AG-490 (AG). Functional recovery and STAT activation were assessed. TAC rats had a 31% increase in left ventricular mass (1,347 ± 58 vs. 1,028 ± 43 mg, TAC vs. sham, P < 0.001), increased anterior and posterior wall thickness but no difference in ejection fraction compared with sham-operated rats. In TAC, IPC improved end-reperfusion maximum first derivative of developed pressure (+dP/d tmax; 4,648 ± 309 vs. 2,737 ± 343 mmHg/s, IPC vs. non-IPC, P < 0.05) and minimum −dP/d t (−dP/d tmin; −2,239 ± 205 vs. −1,215 ± 149 mmHg/s, IPC vs. non-IPC, P < 0.05). IPC increased nuclear pSTAT-1 and pSTAT-3 in sham-operated rats but only pSTAT-3 in TAC. AG in TAC significantly attenuated +dP/d tmax(4,648 ± 309 vs. 3,241 ± 420 mmHg/s, IPC vs. IPC + AG, P < 0.05) and −dP/d tmin(−2,239 ± 205 vs. −1,323 ± 85 mmHg/s, IPC vs. IPC + AG, P < 0.05) and decreased only nuclear pSTAT-3. In myocardial hypertrophy, JAK-STAT signaling is important in IPC and exhibits a pattern of STAT activation distinct from nonhypertrophied myocardium. Limiting STAT-3 activation attenuates the efficacy of IPC in hypertrophy.


1997 ◽  
Vol 272 (2) ◽  
pp. H722-H727 ◽  
Author(s):  
Y. H. Liu ◽  
X. P. Yang ◽  
O. Nass ◽  
H. N. Sabbah ◽  
E. Peterson ◽  
...  

Rat models of heart failure (HF) secondary to myocardial infarction (MI) are useful in studying the progression of cardiac dysfunction and in testing therapeutic approaches. Sprague-Dawley rats are frequently used; however, this model is hampered by high mortality and a marked variability in infarct size and cardiac dysfunction, necessitating large numbers of rats and prolonged follow-up when studying the progression of dysfunction. In the present work, we developed a model of HF utilizing Lewis inbred rats. Ligation of the left anterior descending coronary artery in Lewis rats produced more uniform and larger infarcts (40 +/- 1.7 vs. 28 +/- 2.3%; P < 0.001) and lower mortality (16 vs. 36%; P < 0.001) than in Sprague-Dawley rats. Using this rat model, we further studied the course of left ventricular (LV) dysfunction and enlargement from 1 wk to 6 mo after MI with cineventriculography. LV end-systolic volume and end-diastolic volume were determined with the area-length method. LV ejection fraction ranged between 0.57 and 0.62 in control rats; after MI, it decreased significantly to 0.48 +/- 0.04 at 1 wk, 0.36 +/- 0.02 at 2 wk, 0.48 +/- 0.02 at 1 mo, 0.35 +/- 0.03 at 2 mo, 0.30 +/- 0.02 at 3 mo, 0.31 +/- 0.02 at 4 mo, and 0.24 +/- 0.02 at 6 mo (P < 0.001, MI vs. sham). LV end-diastolic volume in control rats ranged between 0.32 and 0.42 ml; it increased to 0.48 +/- 0.04 ml at 1 wk, 0.46 +/- 0.02 ml at 2 wk, and 0.46 +/- 0.03 ml at 1 mo. It markedly increased to 0.79 +/- 0.03, 0.79 +/- 0.06, 0.78 +/- 0.03, and 0.80 +/- 0.05 ml at 2, 3, 4, and 6 mo, respectively, after MI (P < 0.001 vs. sham). LV end-diastolic pressure was significantly elevated at all time points. Thus coronary ligation in Lewis inbred rats produces uniformly large infarcts with low mortality, progressive LV dysfunction, and increased LV chamber size. This model may be useful in studying chronic HF secondary to MI.


Author(s):  
CL Hastings ◽  
RD Carlton ◽  
FG Lightfoot ◽  
AF Tryka

The earliest ultrastructural manifestation of hypoxic cell injury is the presence of intracellular edema. Does this intracellular edema affect the ability to cryopreserve intact myocardium? To answer this guestion, a model for anoxia induced intracellular edema (IE) was designed based on clinical intraoperative myocardial preservation protocol. The aortas of 250 gm male Sprague-Dawley rats were cannulated and a retrograde flush of Plegisol at 8°C was infused over 90 sec. The hearts were excised and placed in a 28°C bath of Lactated Ringers for 1 h. The left ventricular free wall was then sliced and the myocardium was slam frozen. Control rats (C) were anesthetized, the hearts approached by median sternotomy, and the left ventricular free wall frozen in situ immediately after slicing. The slam frozen samples were obtained utilizing the DDK PS1000, which was precooled to -185°C in liguid nitrogen. The tissue was in contact with the metal mirror for a dwell time of 20 sec, and stored in liguid nitrogen until freeze dry processing (Lightfoot, 1990).


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Jingtao Na ◽  
Haifeng Jin ◽  
Xin Wang ◽  
Kan Huang ◽  
Shuang Sun ◽  
...  

Abstract Background Heart failure (HF) is a clinical syndrome characterized by left ventricular dysfunction or elevated intracardiac pressures. Research supports that microRNAs (miRs) participate in HF by regulating  targeted genes. Hence, the current study set out to study the role of HDAC3-medaited miR-18a in HF by targeting ADRB3. Methods Firstly, HF mouse models were established by ligation of the left coronary artery at the lower edge of the left atrial appendage, and HF cell models were generated in the cardiomyocytes, followed by ectopic expression and silencing experiments. Numerous parameters including left ventricular posterior wall dimension (LVPWD), interventricular septal dimension (IVSD), left ventricular end diastolic diameter (LVEDD), left ventricular end systolic diameter (LVESD), left ventricular ejection fraction (LVEF), left ventricular fractional shortening (LVFS), left ventricular systolic pressure (LVSP), left ventricular end diastolic pressure (LEVDP), heart rate (HR), left ventricular pressure rise rate (+ dp/dt) and left ventricular pressure drop rate (-dp/dt) were measured in the mice. In addition, apoptosis in the mice was detected by means of TUNEL staining, while RT-qPCR and Western blot analysis were performed to detect miR-18a, HDAC3, ADRB3, cMyb, MMP-9, Collagen 1 and TGF-β1 expression patterns. Dual luciferase reporter assay validated the targeting relationship between ADRB3 and miR-18a. Cardiomyocyte apoptosis was determined by means of flow cytometry. Results HDAC3 and ADRB3 were up-regulated and miR-18a was down-regulated in HF mice and cardiomyocytes. In addition, HDAC3 could reduce the miR-18a expression, and ADRB3 was negatively-targeted by miR-18a. After down-regulation of HDAC3 or ADRB3 or over-expression of miR-18a, IVSD, LVEDD, LVESD and LEVDP were found to be decreased but LVPWD, LVEF, LVFS, LVSP, + dp/dt, and −dp/dt were all increased in the HF mice, whereas fibrosis, hypertrophy and apoptosis of HF cardiomyocytes were declined. Conclusion Collectively, our findings indicate that HDAC3 silencing confers protection against HF by inhibiting miR-18a-targeted ADRB3.


2006 ◽  
Vol 290 (5) ◽  
pp. F1034-F1043 ◽  
Author(s):  
Tarek M. El-Achkar ◽  
Xiaoping Huang ◽  
Zoya Plotkin ◽  
Ruben M. Sandoval ◽  
Georges J. Rhodes ◽  
...  

Toll-like receptors (TLRs) are now recognized as the major receptors for microbial pathogens on cells of the innate immune system. Recently, TLRs were also identified in many organs including the kidney. However, the cellular distribution and role of these renal TLRs remain largely unknown. In this paper, we investigated the expression of TLR4 in a cecal ligation and puncture (CLP) model of sepsis in Sprague-Dawley rats utilizing fluorescence microscopy. In sham animals, TLR4 was expressed predominantly in Tamm-Horsfall protein (THP)-positive tubules. In CLP animals, TLR4 expression increased markedly in all tubules (proximal and distal), glomeruli, and the renal vasculature. The staining showed a strong apical distribution in all tubules. A moderately less intense cellular signal colocalized partially with the Golgi apparatus. In addition, kidneys from septic rats showed increased expression of CD14 and THP. They each colocalized strongly with TLR4, albeit in different tubular segments. We also imaged the kidneys of live septic animals with two-photon microscopy after fluorescent lipopolysaccharide (LPS) injection. Within 10 min, LPS was seen at the brush border of some proximal tubules. Within 60 min, LPS was fully cytoplasmic in proximal tubules. Conversely, distal tubules showed no LPS uptake. We conclude that TLR4, CD14, and THP have specific renal cellular and tubular expression patterns that are markedly affected by sepsis. Systemic endotoxin can freely access the tubular and cellular sites where these proteins are present. Therefore, locally expressed TLRs and other interacting proteins could potentially modulate the renal response to systemic sepsis.


Circulation ◽  
2014 ◽  
Vol 130 (suppl_2) ◽  
Author(s):  
Ethan J Rowin ◽  
Barry J Maron ◽  
Iacopo Olivotto ◽  
Susan A Casey ◽  
Anna Arretini ◽  
...  

Background: One-third of HCM patients without left ventricular outflow tract obstruction under resting conditions have the propensity to develop an outflow gradient with physiologic exercise. However, the natural history and management implications of exercise-induced (i.e., provocable) obstruction is unresolved. Methods: We prospectively studied 533 consecutive HCM patients without outflow obstruction at rest (<30mmHg) who underwent a symptom limiting stress (exercise) echocardiogram to assess development of outflow obstruction following physiologic provocation and followed for 6.5 ± 2.0 years. Of the 533 patients, obstruction ≥ 30 mmHg was present following exercise in 262 patients (49%; provocable obstruction), and was absent both at rest and with exercise in 271 (51%; nonobstructive). Results: Over the follow-up period, 43 out of 220 (20%) HCM patients with provocable obstruction and baseline NYHA class I/II symptoms developed progressive limiting heart failure symptoms to class III/IV, compared to 24 of 249 (10%) nonobstructive patients. Rate of heart failure progression was significantly greater in patients with provocable obstruction vs. nonobstructive patients (3.1%/year vs. 1.5%/year; RR=2.0, 95% CI of 1.3-3.2; p=0.003). However, the vast majority of patients with provocable obstruction who developed advanced heart failure symptoms achieved substantial improvement in symptoms to class I / II following relief of obstruction with invasive septal reduction therapy (n=30/32; 94%). In comparison, the majority of nonobstructive patients who developed advanced heart failure remained in class III/IV (16/24;67%), including 10 (42%) currently listed for heart transplant. Conclusions: Stress (exercise) echocardiogram identifies physiological provocable outflow tract obstruction in HCM, and is a predictor of future risk for progressive heart failure (3.1%/year), in patients who become candidates for invasive septal reduction therapy. Therefore, exercise echocardiography should be considered in all HCM patients without obstruction under resting conditions.


Sign in / Sign up

Export Citation Format

Share Document