Epoxyeicosatrienoic acid-based therapIES attenuate POSTISCHEMIC heart failure progression IN NORMOTENSIVE SPRAGUE-DAWLEY rats but not in ANIMALS with Angiotensine II-dependent hypertension

2018 ◽  
Vol 120 ◽  
pp. 23-24
Author(s):  
J. Hrdlička ◽  
J. Neckář ◽  
Z. Husková ◽  
L. Sedláková ◽  
P. Alánová ◽  
...  
2017 ◽  
Vol 43 (6) ◽  
pp. 2479-2488 ◽  
Author(s):  
Xiaoying Dong ◽  
Can Wang ◽  
Jingqi Zhang ◽  
Siyue Wang ◽  
Hongjian Li ◽  
...  

Background/Aims: Cholecystokinin (CCK) is expressed in cardiomyocytes and may also play an important role in cardiovascular regulation. Clinical studies have shown that plasma CCK levels are an independent marker of cardiovascular mortality in cardiac disease. However, whether the development of postinfarction heart failure is associated with changes in CCK expression is unknown. Methods: To investigate CCK expression patterns and the association between CCK expression and heart functional parameters, we randomized male Sprague-Dawley rats into myocardial infarction (MI) or sham operation (SO) groups. CCK expression levels were assessed by western blotting, immunohistochemistry, real-time polymerase chain reaction (PCR), and enzyme-linked immunosorbent assay (ELISA) at different time points (2, 4 or 6 weeks) after surgery. Brain natriuretic peptide (BNP) concentrations were determined using Western blotting and ELISA, myocardial morphology was assessed by microscopy. Results: Plasma CCK and BNP levels were significantly increased in all the MI groups compared with the corresponding SO groups. However, the degree to which myocardial CCK mRNA and protein expression levels were increased the MI groups compared with the SO groups was greater in the 4- and 6-week groups than in the 2-week group. Furthermore, plasma CCK levels were positively correlated with BNP concentrations and left ventricular end-systolic diameter (LVDs) and significantly negatively correlated with the ejection fraction (EF) and shortening fraction (SF) in model animals. Conclusions: Heart failure progression after infarction is associated with upregulated CCK levels; thus, CCK may be useful as a novel marker of heart failure.


Circulation ◽  
2008 ◽  
Vol 118 (suppl_18) ◽  
Author(s):  
Michele Ciccarelli ◽  
Giuseppe Rengo ◽  
Kurt Chuprun ◽  
Gaetano Santulli ◽  
Bruno Trimarco ◽  
...  

The beta adrenergic receptor (βAR) kinase, GRK2, is upregulated and participates to the evolution of heart failure (HF) through downregulation and desensitization of βARs. Recent studies showed that this molecule affects insulin signaling and reduce glucose uptake in hepatocytes and adipocytes. We hypothesized that in HF, GRK2 reduces cardiac performance also through inhibition of cardiac glucose metabolism. In 12 week old Sprague/Dawley rats, we measured cardiac glucose uptake by PET 3 days, 3 and 6 weeks after myocardial infarction (MI). Function and cardiac dimensions were measured by echocardiography. We observed that glucose uptake was reduced in animal post-MI at 3 and 6 weeks respect to healthy animals (3 rd week: 1.3±0.22 vs 2.1±0.3; 6 th week: 1±0.1 vs 2.4±0.2, ml/min/g, p<0.05). No difference was observed in glucose uptake acutely after surgery. Echo showed cardiac dilation and reduced function at 6 weeks (LVD: 9.2± 0.3 vs 7.2± 0.4 mm; EF: 42%±1.1 vs 66%±2.2, p<0.05, Sham vs MI). To inhibit GRK2 in the heart during post-ischemic HF, we delivered the GRK2 inhibitor βARKct by adeno-associated type 6 virus (AAV6) to the left ventricle before induction of the MI. As a control we treated rats with AAV6 encoding for the green fluorescent protein (GFP). Cardiac dilation and function were preserved after 6 weeks post MI in AAV6 βARKct respect to AAV6GFP rats (LVD: 7.73 ±0.25 vs 9.9 ±0.8 mm; EF: 55%±2.25 vs 44%±2, p<0.05). Glucose uptake was better preserved in AAV6βARKct rats after 3 and 6 weeks post MI respect to AAV6GFP group (3rd week: 2.3±0.3 vs 1.2±0.2; 6th week: 1.8±0.2 vs 1.1±0.05, ml/min/g, p<0.05). Since Akt mediates most of the anabolic effects of insulin in cells, we evaluated the effects of GRK2 overexpression by adenovirus (ADGRK2) in neonatal cardiomyocytes (NRVMs) on Akt phosphorylation later on insulin stimulation (ins, 10 – 6 M). As control we induced overexpression of GFP by adenovirus (ADGFP). We observed reduced activation of Akt in presence of GRK2 overexpression as compared to the ADGFP treated cells (1.2±0.2- vs. 3.5±0.4- fold activation over basal, p<0.05). Our data show that post MI, impaired glucose extraction precedes development of HF, and that early GRK2 inhibition prevents impaired myocardial glucose uptake and HF development.


Author(s):  
L. Hay ◽  
R.A. Schultz ◽  
P.J. Schutte

Previous studies have shown that crude extracts from Pavetta harborii as well as dried plant material have cardiotoxic effects on rats and sheep that can lead to heart failure. The active component has since been isolated and identified. This substance has been named pavetamine. The aim of this study was to determine whether pavetamine has cardiotoxic effects similar to those seen in previous reports, when administered to rats intraperitoneally. Sprague Dawley rats received two doses, initially 4 mg / kg and then 3 mg / kg pavetamine respectively and were monitored for 35 days before cardiodynamic parameters were measured by inserting a fluid-filled catheter into the left ventricle via the right carotid artery. These values were compared to those of control rats that had received only saline. Pavetamine significantly reduced systolic function and body mass in the treated rats, which indicates that it has the potential to induce heart failure in this animal model.


2019 ◽  
Vol 2019 ◽  
pp. 1-13 ◽  
Author(s):  
Jian Zhang ◽  
Junjie Liu ◽  
Sheng Gao ◽  
Weili Lin ◽  
Pengrong Gao ◽  
...  

Qishen granules (QSG) are a famous formula with cardioprotective properties to heart failure (HF). The aim of this study was to investigate the underlying mechanism of QSG on apoptosis and fibrosis in the treatment of HF. HF model was induced by left anterior descending artery ligation on Sprague-Dawley rats. Transcriptome analysis was used to investigate the regulatory pathways of QSG on HF. Interestingly, downregulated genes of QSG were significantly enriched in Hippo pathway which plays a crucial role in regulating cell apoptosis and proliferation. We found that QSG inhibited the expressions of proapoptotic key proteins P-53 and fibrosis-related proteins TGF-β1, SMAD3, and CTGF. Further, we conducted research on the key proteins in the Hippo pathway upstream of CTGF and P-53. The results showed that MST1, P-MST1, P-LATS1, and RASSF1A that exert proapoptotic function were downregulated after QSG intervention. Similarly, P-YAP and P-TAZ, mediating self-degradation and apoptosis, were both observably decreased after QSG administration. Taken together, QSG are shown to be likely to exert cardioprotective effects by inhibiting the progression of apoptosis and fibrosis through Hippo pathway.


1990 ◽  
Vol 258 (2) ◽  
pp. E269-E274 ◽  
Author(s):  
W. L. Henrich ◽  
J. R. Falck ◽  
W. B. Campbell

The effects of products of the cytochrome P-450 epoxygenase pathway of arachidonate metabolism on renin have not been previously examined. Initial high-performance liquid chromatography and gas chromatography-mass spectrometry studies documented the synthesis of four epoxyeicosatrienoic acid (EET) regioisomers of epoxygenase in superficial cortical slices from male Sprague-Dawley rats. Each regioisomer was tested for effects on both isoproterenol (ISO)-stimulated and basal renin secretion from cortical slices. ISO increased renin release significantly (169%, P less than 0.01) in all incubations; 14,15-EET (10(-6) M) significantly reduced this increase in stimulated renin release to 47%. The 5,6-, 8,9-, and 11,12-EETs did not significantly affect renin release. Basal renin release was not affected by any of the four EETs. To examine the mechanism of this inhibitory action, the effects of 14,15-EET on tissue adenosine 3',5'-cyclic monophosphate (cAMP) and guanosine 5'-cyclic monophosphate (cGMP) concentrations were measured. Tissue cAMP concentrations were sharply increased (4.75-fold, P less than 0.001) by ISO; 14,15-EET did not blunt this increase significantly. ISO and 14,15-EET did not affect tissue cGMP concentrations. Incubation of [14C]EET with cortical slices resulted in only 10% conversion of the 14,15-EET to 14,15-dihydroxyeicosatrienoic acid (DHET) (diol) after 90 min; no other metabolites were observed. The 14,15 DHET did not alter either basal or stimulated renin release. These studies document the synthesis of EETs in rat kidney and demonstrate a direct effect of the 14,15-EET to inhibit stimulated renin release. This inhibitory action occurs without an effect on tissue cAMP or cGMP concentrations.


2006 ◽  
Vol 291 (1) ◽  
pp. F155-F161 ◽  
Author(s):  
Mairéad A. Carroll ◽  
Anabel B. Doumad ◽  
Jing Li ◽  
Monica K. Cheng ◽  
J. R. Falck ◽  
...  

Dilation of rat preglomerular microvessels (PGMV) by activation of adenosine A2A receptors (A2AR) is coupled to epoxyeicosatrienoic acid (EET) release. We have investigated the commonality of this signal transduction pathway, i.e., sequential inhibition of Gsα, adenylyl cyclase, PKA, and Ca2+-activated K+ (KCa) channel activity, to the vasoactive responses to A2AR activation by a selective A2A agonist, CGS-21680, compared with those of 11,12-EET. Male Sprague-Dawley rats were anesthetized, and microdissected arcuate arteries (110–130 μm) were cannulated and pressurized to 80 mmHg. Vessels were superfused with Krebs solution containing NG-nitro-L-arginine methyl ester (l-NAME) and indomethacin and preconstricted with phenylephrine. We assessed the effect of 3-aminobenzamide (10 μM), an inhibitor of mono-ADP-ribosyltranferases, on responses to 11,12-EET (3 nM) and CGS-21680 (10 μM) and found that both were inhibited by ∼70% ( P < 0.05), whereas the response to SNP (10 μM) was unaffected. Furthermore, 11,12-EET (100 nM), like cholera toxin (100 ng/ml), stimulated ADP-ribose formation in homogenates of arcuate arteries compared with control. SQ-22536 (10 μM), an inhibitor of adenylyl cyclase activity, and myristolated PKI (14–22) amide (5 μM), an inhibitor of PKA, decreased activity of 11,12-EET and CGS-21680. Incubation of 11,12-EET (3 nM-3 μM) with PGMV resulted in an increase in cAMP levels ( P < 0.05). The responses to both 11,12-EET and CGS-21680 were significantly reduced by superfusion of iberiotoxin (100 nM), an inhibitor of KCa channel activity. Thus in rat PGMV activation of A2AR is coupled to EET release upstream of adenylyl cyclase activation and EETs stimulate mono-ADP-ribosyltransferase, resulting in Gsα protein activation.


2003 ◽  
Vol 94 (3) ◽  
pp. 1169-1176 ◽  
Author(s):  
Ronald K. Evans ◽  
Dean D. Schwartz ◽  
L. Bruce Gladden

The purpose of this study was to determine lactate transport kinetics in single isolated rat ventricular cardiac myocytes after 1) 8 wk of myocardial volume overload (MVO) and 2) congestive heart failure (CHF). Twenty male Sprague-Dawley rats were assigned to one of four groups: myocardial hypertrophy (MH), MH sham (MHS), CHF, or CHF sham (CHFS). A chronic MVO was induced in the MH and CHF groups by an infrarenal arteriovenous fistula. Postdeath heart and lung weights were significantly greater ( P < 0.05) for the MH and CHF groups compared with controls. Isolated cardiac myocytes were loaded with BCECF to determine intracellular pH (pHi) changes after the addition of lactate to the extracellular superfusate. Alterations in pHi with the addition of varied lactate concentrations were attenuated 72–89% by 5.0 mM α-cyano-4-hydroxycinnamate. Significant differences ( P < 0.05) were found in estimated maximal lactate transport rates between the experimental and sham groups (MH = 19.4 ± 1.1 nmol · μl−1 · min−1vs. MHS = 15.1 ± 1.1 nmol · μl−1 · min−1; CHF = 20.2 ± 2.0 nmol · μl−1 · min−1vs. CHFS = 14.0 ± 0.9 nmol · μl−1 · min−1). Western blot analysis confirmed a 270% increase in monocarboxylate symport protein 1 (MCT1) protein content in CHF compared with CHFS rats. The results of this study suggest that MH and CHF induced by MVO engender a greater maximal lactate transport capacity across the cardiac myocyte sarcolemma along with an increase in MCT1 protein content. These alterations would likely benefit the cell by attenuating intracellular acidification during a period of increased myocardial load.


2000 ◽  
Vol 279 (2) ◽  
pp. R455-R460 ◽  
Author(s):  
Wieslaw Kozak ◽  
Matthew J. Kluger ◽  
Anna Kozak ◽  
Maciej Wachulec ◽  
Karol Dokladny

In previous reports, we (15, 18) and others (29) demonstrated data showing that various inhibitors of cytochrome P-450/epoxygenase augment fever in rats and mice, indicating that the enzyme may be involved in endogenous antipyresis. The aim of this study was to further test the hypothesis that the P-450-dependent epoxygenase pathway of arachidonic acid is part of the homeostatic system to control the height of fever. Sprague-Dawley rats were implanted with biotelemeters to monitor body temperature. Fever was induced by intraperitoneal injection of lipopolysaccharide (LPS; 80 μg/kg). We demonstrate that intraperitoneal administration of P-450 inducers (bezafibrate and dehydroepiandrosterone, 10 and 100 mg/kg) before LPS reduced fever in rats in a dose-dependent manner. In complementary experiments, rats were implanted with brain cannulas in addition to the biotelemeters. Various isomers of epoxyeicosanoids were administered into the lateral ventricle at doses of 0.01 to 10 μg/rat to test their influence on LPS-induced fever in rats. Four of five isomers were antipyretic in a dose-dependent manner. The most potent antipyretic isomers were 11,12-epoxyeicosatrienoic acid (EET) followed by 14,15-EET, 8,9-EET, and 12(R) hydroxyeicosatetraenoic acid. These data support the hypothesis that the cytochrome P-450/epoxygenase pathway of arachidonate metabolism is part of the endogenous antipyretic system.


2020 ◽  
Author(s):  
Qi Chen ◽  
Dini Zhang ◽  
Yunhui Bi ◽  
Weiwei Zhang ◽  
Yuhan Zhang ◽  
...  

Abstract Background : Heart failure (HF) is one of the most common causes of cardiovascular diseases in the world. Currently, the drugs used to treat HF in the clinic may cause serious side effects. Liguzinediol, 2, 5-dimethyl-3, 6-dimethyl-pyrazine, is a compound synthesized after the structural modification of ligustrazine (one active ingredient of Szechwan Lovage Rhizome ). We aimed to observe the effects of liguzinediol on preventing HF and explore the related mechanisms. Methods : The ligation of left anterior descending coronary artery was operated to established the myocardial infarction (MI) model in Sprague–Dawley rats. Cardiac functions were recorded by echocardiography and hemodynamics. The changes in the Renin-Angiotensin-Aldosterone System (RAAS), inflammation, and oxidative stress were detected by radioimmunoassay and Elisa kits. Western blot and real-time PCR were applied to determine the expressions of the TGF-β1/Smads pathway. Results : Firstly, liguzinediol enhanced the systolic and diastolic functions of the heart in MI rats. Liguzinediol improved ventricular remodeling by reducing myocardial cell necrosis, as well as reducing collagen deposition and myocardial fibrosis. Then, liguzinediol suppressed the activation of RAAS, inhibited the synthesis of pro-inflammation factors, and reduced oxidative stress. In the end, liguzinediol also down-regulated the expressions of the TGF-β1/Smads pathway. Conclusions : Liguzinediol could alleviate HF caused by MI in rats, and the protective effect was associated with the regulation of the TGF-β1/Smads pathway.


Sign in / Sign up

Export Citation Format

Share Document