scholarly journals Sulodexide Slows Down the Senescence of Aortic Endothelial Cells Exposed to Serum from Patients with Peripheral Artery Diseases

2018 ◽  
Vol 45 (6) ◽  
pp. 2225-2232 ◽  
Author(s):  
Patrycja Sosińska-Zawierucha ◽  
Beata Maćkowiak ◽  
Ryszard Staniszewski ◽  
Katarzyna Sumińska-Jasińska ◽  
Magdalena Maj ◽  
...  

Background/Aims: Aging of the arterial endothelial cells results in the appearance of their inflammatory phenotype, which may predispose patients to the acceleration of arteriosclerosis. We studied the effect of serum from patients with peripheral artery disease (PAD) on the senescence of human aortic endothelial cells (HAEC) and how that process is modulated by sulodexide. Methods: HAEC replicative aging in vitro was studied in the presence of 10% PAD-serum (PAD Group) or10%PAD serum and Sulodexide 0.5 LRU/mL (PAD-SUL group). In control group cells were cultured in medium supplemented with 10% fetal bovine serum. All studied parameters were evaluated at the beginning and at the end of the study, in all experimental groups. Population doubling time (PDT) was studied from the cells growth rate after repeated passages, and senescence-associated beta- galactosidase activity (SA-β gal activity) was measured with the fluorescence flow cytometry. Expression of IL6, vWF, p21 and p53 genes was measured with the real-time polymerase chain reaction (Real-Time PCR). Concentrations of IL6 and vWF were measured with the standard ELISA kits. Results: PAD serum accelerated the senescence of HAEC as reflected by increased, compared to control, expression of the IL6 gene (+43%, p<0.05) vWF gene (+443%, p<0.01), p21 gene (+ 124%, p<0.01) and p53 gene (+ 85%, p<0.01). Secretion of IL6 and vWF was higher in that group: + 101%, p<0.01 and + 78%, p<0.01, respectively, as compared to control. Also, SA-β gal activity was higher in the PAD group (+33%, p<0.05) than in the control group. In the PAD group PDT was longer (+108%, p<0.01) as compared to control. Simultaneous use of Sulodexide with PAD serum significantly reduced all the above described senescent changes in HAEC. Conclusions: PAD serum accelerates the aging of HAEC which may result in the faster progression of arteriosclerosis. Sulodexide reduces PAD induced senescence of HAEC, which results in lower inflammatory and thrombogenic activity of these cells.

2021 ◽  
Vol 24 (8) ◽  
pp. 607-614
Author(s):  
Maryam Samareh Salavati Pour ◽  
Fatemeh Hoseinpour Kasgari ◽  
Alireza Farsinejad ◽  
Ahmad Fatemi ◽  
Gholamhossein Hassanshahi ◽  
...  

Background: Due to their self-renewal and differentiation ability, the mesenchymal stem cells (MSCs) have been studied extensively. However, the MSCs lifespan is restricted; they undergo several divisions in vitro that cause several alternations in cellular features and relatively lessens their application. Thus, this study was aimed to assess the effect of platelet-derived microparticles (PMPs), a valuable source of proteins, microRNAs (miRNAs), and growth factors, on the expression of hTERT, c-MYC, p16, p53, and p21 as the most important aging and cell longevity genes alongside with population doubling time (PDT) of PMP-treated cells in comparison to a control group. Methods: Umbilical cord MSCs (UC-MSCs) were used in this study, whereby they reached a confluency of 30%. MSCs were treated by PMPs (50 µg/mL), and then, PDT was determined for both groups. Quantitative expression of hTERT, c-MYC, p16, p53, and p21 was examined through quantitative real-time PCR at various intervals (i.e. after five and thirty days as well as freezing-thawing process). Results: Our results demonstrated that the treated group had a shorter PDT in comparison to the control group (P<0.050). The real-Time PCR data also indicated that PMPs were able to remarkably up-regulate hTERT and c-MYC genes expression while down-regulating the expression of p16, p21, and p53 genes (P<0.050), especially following five days of treatment. Conclusion: According to these data, it appears that PMPs are a safe and effective candidate for prolonging the lifespan of UC-MSCs; however, further investigations are needed to corroborate this finding.


1997 ◽  
Vol 75 (6) ◽  
pp. 717-720 ◽  
Author(s):  
Ling-Hua Zeng ◽  
Jun Wu ◽  
Beverly Fung ◽  
Jeffrey H Tong ◽  
Donald Mickle ◽  
...  

Oxygen-derived free radicals are known to injure the endothelium of aorta in diverse disorders. In this study we compared the cytoprotective effects of three flavonoids against oxyradical damage to porcine aortic endothelial cells in vitro. Cultured porcine aortic endothelial cells were exposed to oxyradicals generated by xanthine oxidase - hypoxanthine (XO-HP). The cytoprotective activities of morin, quercetin, and catechin on these systems were compared using established morphologic criteria. The results in the XO-HP system showed that morin at 0.125, 0.25, and 0.5 mM delayed cell necrosis to 27.4 ± 1.3, 46.8 ± 1.8, and longer than 70 min, respectively, compared with 12.0 ± 1.3 min in the control group. These degrees of protection were significantly stronger than those provided by quercetin and catechin at corresponding concentrations (p < 0.01). Morin and quercetin were moderate inhibitors of xanthine oxidase on the basis of the oxygen consumption rate, whereas catechin at the same concentrations had little inhibitory effect. The data from uric acid formation and cytochrome c reduction were consistent with the oxygen consumption measurement for the three flavonoids. Key words: flavonoids, oxyradicals, aortic endothelial cells.


1983 ◽  
Vol 49 (02) ◽  
pp. 132-137 ◽  
Author(s):  
A Eldor ◽  
G Polliack ◽  
I Vlodavsky ◽  
M Levy

SummaryDipyrone and its metabolites 4-methylaminoantipyrine, 4-aminoantipyrine, 4-acetylaminoantipyrine and 4-formylaminoan- tipyrine inhibited the formation of thromboxane A2 (TXA2) during in vitro platelet aggregation induced by ADP, epinephrine, collagen, ionophore A23187 and arachidonic acid. Inhibition occurred after a short incubation (30–40 sec) and depended on the concentration of the drug or its metabolites and the aggregating agents. The minimal inhibitory concentration of dipyrone needed to completely block aggregation varied between individual donors, and related directly to the inherent capacity of their platelets to synthesize TXA2.Incubation of dipyrone with cultured bovine aortic endothelial cells resulted in a time and dose dependent inhibition of the release of prostacyclin (PGI2) into the culture medium. However, inhibition was abolished when the drug was removed from the culture, or when the cells were stimulated to produce PGI2 with either arachidonic acid or ionophore A23187.These results indicate that dipyrone exerts its inhibitory effect on prostaglandins synthesis by platelets or endothelial cells through a competitive inhibition of the cyclooxygenase system.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Om Makwana ◽  
Gina A. Smith ◽  
Hannah E. Flockton ◽  
Gary P. Watters ◽  
Frazer Lowe ◽  
...  

AbstractAtherosclerosis is a complex process involving progressive pathological events, including monocyte adhesion to the luminal endothelial surface. We have developed a functional in vitro adhesion assay using BioFlux microfluidic technology to investigate THP-1 (human acute monocytic leukaemia cell) monocyte adhesion to human aortic endothelial cells (HAECs). The effect of whole smoke conditioned media (WSCM) generated from University of Kentucky reference cigarette 3R4F, electronic cigarette vapour conditioned media (eVCM) from an electronic nicotine delivery system (ENDS) product (Vype ePen) and nicotine on monocyte adhesion to HAECs was evaluated. Endothelial monolayers were grown in microfluidic channels and exposed to 0–1500 ng/mL nicotine or nicotine equivalence of WSCM or eVCM for 24 h. Activated THP-1 cells were perfused through the channels and a perfusion, adhesion period and wash cycle performed four times with increasing adhesion period lengths (10, 20, 30 and 40 min). THP-1 cell adhesion was quantified by counting adherent cells. WSCM induced dose-dependent increases in monocyte adhesion compared to vehicle control. No such increases were observed for eVCM or nicotine. Adhesion regulation was linked to increased ICAM-1 protein expression. Staining of ICAM-1 in HAECs and CD11b (MAC-1) in THP-1 cells demonstrated adhesion molecule co-localisation in BioFlux plates. The ICAM-1 adhesion response to WSCM was downregulated by transfecting HAECs with ICAM-1 siRNA. We conclude that the BioFlux system is able to model human monocyte adhesion to primary human endothelial cells in vitro and WSCM drives the greatest increase in monocyte adhesion via a mechanism involving endothelial ICAM-1 expression.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
A. Gericke ◽  
K. Suminska-Jasińska ◽  
A. Bręborowicz

AbstractChronic exposure of retinal endothelium cells to hyperglycemia is the leading cause of diabetic retinopathy. We evaluated the effect of high glucose concentration on senescence in human retinal endothelial cells (HREC) and modulation of that effect by Sulodexide. Experiments were performed on HREC undergoing in vitro replicative senescence in standard medium or medium supplemented with glucose 20 mmol/L (GLU) or mannitol 20 mnol/L (MAN). Effect of Sulodexide 0.5 LRU/mL (SUL) on the process of HREC senescence was studied. Glucose 20 mmol/L accelerates senescence of HREC: population doubling time (+ 58%, p < 0.001) β-galactosidase activity (+ 60%, p < 0.002) intracellular oxidative stress (+ 65%, p < 0.01), expression of p53 gene (+ 118%, p < 0.001). Senescent HREC had also reduced transendothelial electrical resistance (TEER) (− 30%, p < 0.001). Mannitol 20 mmol/L used in the same scenario as glucose did not induce HREC senescence. In HREC exposed to GLU and SUL, the senescent changes were smaller. HREC, which became senescent in the presence of GLU, demonstrated higher expression of genes regulating the synthesis of Il6 and VEGF-A, which was reflected by increased secretion of these cytokines (IL6 + 125%, p < 0.001 vs control and VEGF-A + 124% p < 0.001 vs control). These effects were smaller in the presence of SUL, and additionally, an increase of TEER in the senescent HREC was observed. Chronic exposure of HREC to high glucose concentration in medium accelerates their senescence, and that process is reduced when the cells are simultaneously exposed to Sulodexide. Additionally, Sulodexide decreases the secretion of IL6 and VEGF-A from senescent HREC and increases their TEER.


1984 ◽  
Vol 68 (1) ◽  
pp. 153-162
Author(s):  
N.J. Dodd ◽  
S. Kumar

Two distinct factors have been separated from an angiogenic extract of a rat Walker 256 carcinoma, one inducing proliferation and the other migration of capillary endothelial cells in vitro, but having no detectable effect on aortic endothelial cells. The influence of these factors on the order of plasma membranes of these cells was examined by electron spin resonance, using the lipophilic spin label 5-doxyl stearic acid. No detectable effect was observed on treating whole cells or isolated membranes with proliferation factor. In contrast, exposure of capillary endothelial cell membranes to migration factor caused a reduction of membrane order, particularly at temperatures above 30 degrees C. The migration factor had no detectable effect on membrane order of aortic endothelial cells.


2020 ◽  
Vol 2020 ◽  
pp. 1-11
Author(s):  
Irvin Tubon ◽  
Chiara Bernardini ◽  
Fabiana Antognoni ◽  
Roberto Mandrioli ◽  
Giulia Potente ◽  
...  

Clinopodium tomentosum (Kunth) Govaerts is an endemic species in Ecuador, where it is used as an anti-inflammatory plant to treat respiratory and digestive affections. In this work, effects of a Clinopodium tomentosum ethanolic extract (CTEE), prepared from aerial parts of the plant, were investigated on vascular endothelium functions. In particularly, angiogenesis activity was evaluated, using primary cultures of porcine aortic endothelial cells (pAECs). Cells were cultured for 24 h in the presence of CTEE different concentrations (10, 25, 50, and 100 μg/ml); no viability alterations were found in the 10-50 μg/ml range, while a slight, but significant, proliferative effect was observed at the highest dose. In addition, treatment with CTEE was able to rescue LPS-induced injury in terms of cell viability. The CTEE ability to affect angiogenesis was evaluated by scratch test analysis and by an in vitro capillary-like network assay. Treatment with 25-50 μg/ml of extract caused a significant increase in pAEC’s migration and tube formation capabilities compared to untreated cells, as results from the increased master junctions’ number. On the other hand, CTEE at 100 μg/ml did not induce the same effects. Quantitative PCR data demonstrated that FLK-1 mRNA expression significantly increased at a CTEE dose of 25 μg/ml. The CTEE phytochemical composition was assessed through HPLC-DAD; rosmarinic acid among phenolic acids and hesperidin among flavonoids were found as major phenolic components. Total phenolic content and total flavonoid content assays showed that flavonoids are the most abundant class of polyphenols. The CTEE antioxidant activity was also showed by means of the DPPH and ORAC assays. Results indicate that CTEE possesses an angiogenic capacity in a dose-dependent manner; this represents an initial step in elucidating the mechanism of the therapeutic use of the plant.


2001 ◽  
Vol 75 (21) ◽  
pp. 10372-10382 ◽  
Author(s):  
Isabelle Vallée ◽  
Stephen W. G. Tait ◽  
Penelope P. Powell

ABSTRACT African swine fever (ASF) is an asymptomatic infection of warthogs and bushpigs, which has become an emergent disease of domestic pigs, characterized by hemorrhage, lymphopenia, and disseminated intravascular coagulation. It is caused by a large icosohedral double-stranded DNA virus, African swine fever virus (ASFV), with infection of macrophages well characterized in vitro and in vivo. This study shows that virulent isolates of ASFV also infect primary cultures of porcine aortic endothelial cells and bushpig endothelial cells (BPECs) in vitro. Kinetics of early and late gene expression, viral factory formation, replication, and secretion were similar in endothelial cells and macrophages. However, ASFV-infected endothelial cells died by apoptosis, detected morphologically by terminal deoxynucleotidyltransferase-mediated dUTP nick end labeling and nuclear condensation and biochemically by poly(ADP-ribose) polymerase (PARP) cleavage at 4 h postinfection (hpi). Immediate-early proinflammatory responses were inhibited, characterized by a lack of E-selectin surface expression and interleukin 6 (IL-6) and IL-8 mRNA synthesis. Moreover, ASFV actively downregulated interferon-induced major histocompatibility complex class I surface expression, a strategy by which viruses evade the immune system. Significantly, Western blot analysis showed that the 65-kDa subunit of the transcription factor NF-κB, a central regulator of the early response to viral infection, decreased by 8 hpi and disappeared by 18 hpi. Both disappearance of NF-κB p65 and cleavage of PARP were reversed by the caspase inhibitor z-VAD-fmk. Interestingly, surface expression and mRNA transcription of tissue factor, an important initiator of the coagulation cascade, increased 4 h after ASFV infection. These data suggest a central role for vascular endothelial cells in the hemorrhagic pathogenesis of the disease. Since BPECs infected with ASFV also undergo apoptosis, resistance of the natural host must involve complex pathological factors other than viral tropism.


1998 ◽  
Vol 91 (1) ◽  
pp. 15-21 ◽  
Author(s):  
Yoshiaki Itoh ◽  
Minoru Tomita ◽  
Norio Tanahashi ◽  
Hidetaka Takeda ◽  
Masako Yokoyama ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document