scholarly journals Changes of Myelin Organization in Patients with Alzheimer’s Disease Shown by q-Space Myelin Map Imaging

2019 ◽  
Vol 9 (1) ◽  
pp. 24-33 ◽  
Author(s):  
Miho Ota ◽  
Noriko Sato ◽  
Yukio Kimura ◽  
Yoko Shigemoto ◽  
Hiroshi Kunugi ◽  
...  

Background: Recent studies detected the aberrant myelination of the central nervous system (CNS) in Alzheimer’s disease (AD). Here, we compared the change of myelination between patients with AD and controls by a novel magnetic resonance imaging modality, “q-space myelin map (MM) imaging.” Methods: Twenty patients with AD and 18 healthy subjects underwent MM imaging. We compared the MM metric between the 2 groups and examined the relationships between the metric and the clinical symptoms of AD. Results: AD patients showed a significant reduction of MM metric in the hippocampus, insula, precuneus, and anterior cingulate regions. There was also a significant negative correlation between the duration of illness and the MM metric in the temporoparietal region. Conclusion: Our findings suggest that MM imaging could be a clinically proper modality to estimate the myelination changes in AD patients.

Author(s):  
Jafar Zamani ◽  
Ali Sadr ◽  
Amir-Homayoun Javadi

Purpose: Alzheimer’s disease is a neurodegenerative disease that begins before clinical symptoms emerge. Amyloid-beta plaques and tau neurofibrillary tangles are the hallmark lesions of Alzheimer’s Disease (AD). Amyloid-beta plaques deposition is associated with increased hippocampal volume loss. The tissue volume measures reflect multiple underlying pathologies contributing to neurodegeneration, of which are the most characteristics of AD. Anatomical atrophy, as evidenced using Magnetic Resonance Imaging (MRI), is one of the most validated, easily accessible and widely used biomarkers of AD. Measurements of whole brain and hippocampal atrophy rates from serial structural MRI are potential markers of the underlying neuroaxonal damage and disease progression in AD. In this study, we extract automatically subcortical brain structures in AD and control subjects. Materials and Methods: In this study we used 20 images (10 AD patients and 10 controls) taken from the Minimal Interval Resonance Imaging in Alzheimer's Disease (MIRIAD) dataset. We obtained volumes of Cerebrospinal Fluid (CSF), White Matter (WM), Grey Matter (GM), brain hemispheres, cerebellum and brainstem using volBrain pipeline. Subcortical brain structure segments and related volumes and label maps information were extracted. We compared left and right sides of some of the important brain area in AD for obtaining a biomarker with brain atrophy. Amygdala, caudate and hippocampus have shown to be undergone atrophy in AD. Results: We provided volume information of some intracranial areas such as brain hemispheres, cerebellum and brainstem. Conclusion: The results showed smaller hippocampal volume in AD patients compared to the controls. In addition to hippocampus, similar atrophy is also observable in amygdala and caudate.


Cells ◽  
2020 ◽  
Vol 9 (6) ◽  
pp. 1443 ◽  
Author(s):  
Maria Serpente ◽  
Chiara Fenoglio ◽  
Marianna D’Anca ◽  
Marina Arcaro ◽  
Federica Sorrentino ◽  
...  

Small extracellular vesicles (EVs) are able to pass from the central nervous system (CNS) into peripheral blood and contain molecule markers of their parental origin. The aim of our study was to isolate and characterize total and neural-derived small EVs (NDEVs) and their micro RNA (miRNA) cargo in Alzheimer’s disease (AD) patients. Small NDEVs were isolated from plasma in a population consisting of 40 AD patients and 40 healthy subjects (CTRLs) using high throughput Advanced TaqMan miRNA OpenArrays®, which enables the simultaneous determination of 754 miRNAs. MiR-23a-3p, miR-223-3p, miR-100-3p and miR-190-5p showed a significant dysregulation in small NDEVs from AD patients as compared with controls (1.16 ± 0.49 versus 7.54 ± 2.5, p = 0.026; 9.32 ± 2.27 versus 0.66 ± 0.18, p <0.0001; 0.069 ± 0.01 versus 0.5 ± 0.1, p < 0.0001 and 2.9 ± 1.2 versus 1.93 ± 0.9, p < 0.05, respectively). A further validation analysis confirmed that miR-23a-3p, miR-223-3p and miR-190a-5p levels in small NDEVs from AD patients were significantly upregulated as compared with controls (p = 0.008; p = 0.016; p = 0.003, respectively) whereas miR-100-3p levels were significantly downregulated (p = 0.008). This is the first study that carries out the comparison between total plasma small EV population and NDEVs, demonstrating the presence of a specific AD NDEV miRNA signature.


Author(s):  
V.J.A. Montpetit ◽  
S. Dancea ◽  
S.W. French ◽  
D.F. Clapin

A continuing problem in Alzheimer research is the lack of a suitable animal model for the disease. The absence of neurofibrillary tangles of paired helical filaments is the most critical difference in the processes by which the central nervous system ages in most species other than man. However, restricting consideration to single phenomena, one may identify animal models for specific aspects of Alzheimer's disease. Abnormal fibers resembling PHF have been observed in dorsal root ganglia (DRG) neurons of rats in a study of chronic ethanol intoxication and spontaneously in aged rats. We present in this report evidence that PHF-like filaments occur in ethanol-treated rats of young age. In control animals lesions similar in some respects to our observations of cytoskeletal pathology in pyridoxine induced neurotoxicity were observed.Male Wistar BR rats (Charles River Labs) weighing 350 to 400 g, were implanted with a single gastrostomy cannula and infused with a liquid diet containing 30% of total calories as fat plus ethanol or isocaloric dextrose.


2020 ◽  
Vol 21 (7) ◽  
pp. 628-646
Author(s):  
Gülcem Altinoglu ◽  
Terin Adali

Alzheimer’s disease (AD) is the most common neurodegenerative disease, and is part of a massive and growing health care burden that is destroying the cognitive function of more than 50 million individuals worldwide. Today, therapeutic options are limited to approaches with mild symptomatic benefits. The failure in developing effective drugs is attributed to, but not limited to the highly heterogeneous nature of AD with multiple underlying hypotheses and multifactorial pathology. In addition, targeted drug delivery to the central nervous system (CNS), for the diagnosis and therapy of neurological diseases like AD, is restricted by the challenges posed by blood-brain interfaces surrounding the CNS, limiting the bioavailability of therapeutics. Research done over the last decade has focused on developing new strategies to overcome these limitations and successfully deliver drugs to the CNS. Nanoparticles, that are capable of encapsulating drugs with sustained drug release profiles and adjustable physiochemical properties, can cross the protective barriers surrounding the CNS. Thus, nanotechnology offers new hope for AD treatment as a strong alternative to conventional drug delivery mechanisms. In this review, the potential application of nanoparticle based approaches in Alzheimer’s disease and their implications in therapy is discussed.


2015 ◽  
Vol 12 (10) ◽  
pp. 1006-1011 ◽  
Author(s):  
Minori Yasue ◽  
Saiko Sugiura ◽  
Yasue Uchida ◽  
Hironao Otake ◽  
Masaaki Teranishi ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document