RORA Overexpression Alleviates Nasal Mucosal Injury and Enhances Red Blood Cell Immune Adhesion Function in a Mouse Model of Allergic Rhinitis via Inactivation of the Wnt/β-Catenin Signaling Pathway

2019 ◽  
Vol 180 (2) ◽  
pp. 79-90 ◽  
Author(s):  
Jinqiu Li ◽  
Kai Xue ◽  
Yan Zheng ◽  
Yinan Wang ◽  
Chengbi Xu
Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 4243-4243
Author(s):  
Deborah Chiabrando ◽  
Sonia Mercurio ◽  
Samuele Marro ◽  
Sharmila Fagoonee ◽  
Erika Messana ◽  
...  

Abstract Abstract 4243 Feline Leukemia Virus subgroup C Receptor (FLVCR) was originally identified and cloned as a cell-surface protein receptor for feline leukemia virus subgroup C, causing pure red blood cell aplasia in cats. Recent studies have demonstrated that FLVCR is a heme exporter which is essential for erythropoiesis. The heme efflux via FLVCR was shown to be essential for erythroid differentiation in K562 cells as well as in CD34+ precursors cells1. Moreover, Keel and co-authors have reported that Flvcr-null mice die in utero due to the failure of fetal erythropoiesis; also post-natal mice lacking FLVCR showed severe anemia. In addition to the erythroid defect, Flvcr-null embryos display defective growth and developmental anomalies2. We have identified an alternative transcription start site giving rise to a novel FLVCR isoform (FLVCRb). Flvcr-b transcript completely lacks the first exon of the canonical isoform (FLVCRa) and code for a putative 6 transmembrane domain containing protein ubiquitously expressed. In vitro over-expression of FLVCRa and FLVCRb showed that the two proteins display different subcellular localization. As expected, FLVCRa is localized at the cell membrane while FLVCRb is in the mitochondrial compartment. The mitochondrial localization of this novel isoform is further confirmed by the identification of a N-terminal mitochondrial sorting presequence. The mitochondrion is the site in which heme biosynthesis occurs. Although all the enzymatic reactions involved in heme synthesis are well characterized, how heme is exported to the cytosol is largely unknown. Because of FLVCRa is a heme exporter at the cell membrane, we hypothesized that FLVCRb could be the mitochondrial heme exporter. According to this hypothesis, FLVCRb expression increased following the stimulation of heme biosynthesis in vitro, in correlation with the increase in hemoglobin production. The ability of FLVCRb to bind and export heme out of the mitochondria is still under investigation. To gain insights into the specific roles of the two isoforms, we have generated Flvcr mutant mice different from those previously reported2. Keel and co-author generated a mouse model in which both FLVCRa and FLVCRb have been deleted. In our mouse model, FLVCRa has been specifically deleted while FLVCRb is still expressed (FLVCRa-null mice). Flvcr-a +/− mice were grossly normal, fertile and indistinguishable from their wild-type littermates. When Flvcr-a +/− mice were intercrossed, no Flvcr-a homozygous knock-out newborns were obtained. The analysis of the embryos from timed Flvcr-a +/− intercrosses showed that the Flvcr-a homozygous knock-out genotype was lethal between E14.5 and the birth. E13.5 Flvcr-a-null embryos showed multifocal and extended hemorrhages, visible in the limbs, head and throughout the body wall, as well as subcutaneous edema. Imcomplete vasculogenesis in the Flvcr-a-null embryos was observed at E11.5, a developmental stage in which hemorrhages were not still evident. This suggests that hemorrhages arise from a defect in the development of embryonic vasculature. Moreover, FLVCRa-null embryos showed skeletal abnormalities as demonstrated by Alcian blue-alizarin red staining. Skeletal malformations were evident in the limb where digits did not form properly and in the head where Meckel's cartilage was incomplete. It is interesting to note that this kind of malformations also occurs in Diamond Blackfan Anemia (DBA) patients. Surprisingly, flow cytometric analyses of E14.5 fetal liver cells double-stained for Ter119 (erythroid-specific antigen) and CD71 (transferrin receptor) showed normal erythropoiesis in Flvcr-a-null embryos, in opposition to what occurs in the previously reported Flvcr-null mice2. Taken together, these data demonstrated that FLVCRb is sufficient to support fetal erythropoiesis when the expression of FLVCRa is loss, likely exporting heme out of the mithocondrion for hemoglobin synthesis. Moreover, the loss of FLVCRa leads to incomplete vasculogenesis, hemorrhages and skeletal malformations highlighting new roles of FLVCRa in these processes. 1. Quigley JG et al. Identification of a human heme exporter that is essential for erythropoiesis. Cell 2004 2. Keel SB et al. A heme export protein is required for red blood cell differentiation and iron homeostasis. Science 2008. Disclosures: No relevant conflicts of interest to declare.


2019 ◽  
Author(s):  
Avash Das ◽  
Nedyalka Valkov ◽  
Ane M. Salvador ◽  
Ivan Kur ◽  
Olivia Ziegler ◽  
...  

SummaryExtracellular vesicles (EV) mediate intercellular signaling by transferring their cargo to recipient cells. Red blood cell (RBC)-derived EVs constitute a significant proportion of circulating EVs and have been implicated in regulating immune responses. Here, we describe a transgenic mouse model for fluorescent-based mapping of RBC-EV target cells based on the functional transfer of EV-contained Cre-recombinase to target cells. In a murine model of ischemic heart failure, we detect an increase in RBC-EV-targeted cardiomyocytes in the hearts and microglial cells in the brains. Cells targeted by RBC-EVs present an enrichment of genes implicated in cell proliferation and metabolism pathways compared to non-recombined (non-targeted) cells. Cardiomyocytes targeted by RBC-EVs are more likely to demonstrate cellular markers of DNA synthesis and proliferation, suggesting functional significance of EV-mediated signaling. In conclusion, we leverage our mouse model for mapping of RBC-EV targets in murine ischemic heart failure to demonstrate quantitative and qualitative changes in RBC-EV recipients.


2019 ◽  
Vol 66 ◽  
pp. 282-287 ◽  
Author(s):  
Xueyu Jiang ◽  
Lidong Liu ◽  
Juan Sun ◽  
Jie Yang ◽  
Dong Xiang ◽  
...  

2018 ◽  
Author(s):  
Irina Pinheiro ◽  
Özge Vargel Bölükbaşi ◽  
Kerstin Ganter ◽  
Laura A. Sabou ◽  
Vick Key Tew ◽  
...  

AbstractErythropoiesis occurs through several waves during embryonic development. Although the source of the primitive wave is well characterized, the origin of erythrocytes later in embryogenesis is less clear due to overlaps between the different erythroid waves. Using the miR144/451-GFP mouse model to track cells expressing the erythroid microRNAs miR144/451, we identified cells co-expressing VE-Cadherin and GFP in the yolk sac between E9.5 and E12. This suggested the existence of hemogenic endothelial cells committed to erythropoiesis (Ery-HEC). We showed that these cells were capable of generating erythrocytes ex vivo and we demonstrated that the formation of Ery-HEC was independent of the Runx1 gene expression. Using transcriptome analysis, we demonstrated that these cells coexpressed endothelial and erythroid genes such as Hbb-bh1 and Gata1 but we were surprised to detect the primitive erythroid genes Aqp3 and Aqp8 suggesting the formation of primitive erythrocytes at a much later time point than initially thought. Finally, we showed that enforced expression of Gata1 in endothelial cells was enough to initiate the erythroid transcriptional program.


Transfusion ◽  
2013 ◽  
Vol 54 (1) ◽  
pp. 137-148 ◽  
Author(s):  
James C. Zimring ◽  
Nicole Smith ◽  
Sean R. Stowell ◽  
Jill M. Johnsen ◽  
Lauren N. Bell ◽  
...  

2021 ◽  
Vol 22 (15) ◽  
pp. 8173
Author(s):  
Chun Hua Piao ◽  
Yanjing Fan ◽  
Thi Van Nguyen ◽  
Hee Soon Shin ◽  
Hyoung Tae Kim ◽  
...  

Air pollution-related particulate matter (PM) exposure reportedly enhances allergic airway inflammation. Some studies have shown an association between PM exposure and a risk for allergic rhinitis (AR). However, the effect of PM for AR is not fully understood. An AR mouse model was developed by intranasal administration of 100 μg/mouse PM with a less than or equal to 2.5 μm in aerodynamic diameter (PM2.5) solution, and then by intraperitoneal injection of ovalbumin (OVA) with alum and intranasal challenging with 10 mg/mL OVA. The effects of PM2.5 on oxidative stress and inflammatory response via the Nrf2/NF-κB signaling pathway in mice with or without AR indicating by histological, serum, and protein analyses were examined. PM2.5 administration enhanced allergic inflammatory cell expression in the nasal mucosa through increasing the expression of inflammatory cytokine and reducing the release of Treg cytokine in OVA-induced AR mice, although PM2.5 exposure itself induced neither allergic responses nor damage to nasal and lung tissues. Notably, repeated OVA-immunization markedly impaired the nasal mucosa in the septum region. Moreover, AR with PM2.5 exposure reinforced this impairment in OVA-induced AR mice. Long-term PM2.5 exposure strengthened allergic reactions by inducing the oxidative through malondialdehyde production. The present study also provided evidence, for the first time, that activity of the Nrf2 signaling pathway is inhibited in PM2.5 exposed AR mice. Furthermore, PM2.5 exposure increased the histopathological changes of nasal and lung tissues and related the inflammatory cytokine, and clearly enhanced PM2.5 phagocytosis by alveolar macrophages via activating the NF-κB signaling pathway. These obtained results suggest that AR patients may experience exacerbation of allergic responses in areas with prolonged PM2.5 exposure.


2010 ◽  
Vol 45 (2-4) ◽  
pp. 337-345 ◽  
Author(s):  
Alexei V. Muravyov ◽  
Irina A. Tikhomirova ◽  
Alla A. Maimistova ◽  
Svetlana V. Bulaeva ◽  
Andrey V. Zamishlayev ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document