scholarly journals In vitro Post-Antifungal Effect of Posaconazole and Its Impact on Adhesion-Related Traits and Hemolysin Production of Oral Candida dubliniensis Isolates

2019 ◽  
Vol 28 (6) ◽  
pp. 552-558
Author(s):  
Arjuna Nishantha Bandara Ellepola ◽  
Ranil Samantha Dassanayake ◽  
Ziauddin Khan

Objective: Candidal adherence to denture acrylic surfaces (DAS) and oral buccal epithelial cells (BEC), formation of candidal germ tubes (GT), candidal cell surface hydrophobicity (CSH), and hemolysin production are important pathogenic traits of Candida. The antifungal drug-induced post-antifungal effect (PAFE) also impacts the virulence of Candida. Candida dubliniensis isolates are associated with the causation of oral candidiasis which could be managed with posaconazole. Thus far there is no evidence on posaconazole-induced PAFE and its impact on adhesion-related attributes and production of hemolysin by C. dubliniensis isolates. Hence, the PAFE, adhesion to DAS and BEC, formation of GT, CSH, and hemolysin production of 20 oral C. dubliniensis isolates after brief exposure to posaconazole was ascertained. Materials and Methods: The PAFE, adherence to DAS and BEC, formation of GT, candidal CSH, and hemolysin production were investigated by hitherto described in vitro assays. Results: The mean PAFE (h) induced by posaconazole on C. dubliniensis isolates was 1.66. Exposure to posaconazole suppressed the ability of C. dubliniensis to adhere to DAS, BEC, formation of candidal GT, candidal CSH and to produce hemolysin by a reduction of 44, 33, 34, 36, and 15% (p < 0.005 to p < 0.001), respectively. Conclusion: Exposure of C. dubliniensis isolates to posaconazole for a brief period induced an antimycotic impact by subduing its growth in addition to suppressing pathogenic adherence-associated attributes, as well as production of hemolysin.

2018 ◽  
Vol 27 (6) ◽  
pp. 523-530 ◽  
Author(s):  
Arjuna Nishantha B. Ellepola ◽  
Ranil Samantha Dassanayake ◽  
Ziauddin Khan

Objective: Lysozyme and lactoferrin have anti-candidal activity. Candida dubliniensis is associated with oral candidiasis. Candida infections are managed with nystatin, amphotericin B, caspofungin, ketoconazole, fluconazole, and chlorhexidine. Candida species undergo a brief exposure to therapeutic agents in the mouth. There is no data on the influence of limited exposure to antimycotics on the sensitivity of C. dubliniensis to lactoferrin and lysozyme. Hence, this study observed the changes in the sensitivity of C. dubliniensis to anti-candidal action of lactoferrin and lysozyme after transitory exposure to sub-lethal concentrations of antifungals. Materials and Methods: After determination of the minimum inhibitory concentration (MIC), 20 C. dubliniensis isolates were exposed to twice the concentration of MIC of nystatin, amphotericin B, caspofungin, ketoconazole, fluconazole, and chlorhexidine for 1 h. Drugs were removed by dilution and thereafter the susceptibility of these isolates to lysozyme and lactoferrin was determined by colony-forming unit quantification assay. Results: Exposure of C. dubliniensis to nystatin, amphotericin B, caspofungin, ketoconazole, fluconazole, and chlorhexidine resulted in an increase in susceptibility to lysozyme by 9.45, 30.82, 30.04, 50.64, 55.60, and 50.18%, respectively (p < 0.05 to p < 0.001). Exposure of C. dubliniensis to nystatin, amphotericin B, caspofungin, ketoconazole, fluconazole, and chlorhexidine resulted in an increase in susceptibility to lactoferrin by 13.54, 16.43, 17.58, 19.60, 21.32, and 18.73, respectively (p < 0.05 to p < 0.001). Conclusion: Brief exposure to nystatin, amphotericin B, caspofungin, ketoconazole, fluconazole, and chlorhexidine enhances the antifungal effect of lysozyme and lactoferrin on C. dubliniensis isolates in vitro.


2008 ◽  
Vol 50 (4) ◽  
pp. 203-207 ◽  
Author(s):  
Ângela Maria Mendes Araújo ◽  
Ivi Cristina Menezes de Oliveira ◽  
Marcos Corrêa de Mattos ◽  
Leslie C. Benchetrit

The minimum inhibitory concentration and post-antibiotic effects of an antimicrobial agent are parameters to be taken into consideration when determining its dosage schedules. The in vitro post-antibiotic effects on cell surface hydrophobicity and bacterial adherence were examined in one strain of group B streptococci. Exposure of the microorganism for 2 h at 37 °C to 1 x MIC of penicillin induced a PAE of 1.1 h. The cell surface charge of the Streptococcus was altered significantly during the post-antibiotic phase as shown by its ability to bind to xylene: hydrophobicity was decreased. Bacterial adherence to human buccal epithelial cells was also reduced. The results of the present investigation indicate that studies designed to determine therapeutic regimens should evaluate the clinical significance of aspects of bacterial physiology during the post-antibiotic period.


2020 ◽  
Vol 14 ◽  
Author(s):  
Shogo Ozawa ◽  
Toshitaka Miura ◽  
Jun Terashima ◽  
Wataru Habano ◽  
Seiichi Ishida

Background: In order to avoid drug-induced liver injury (DILI), in vitro assays, which enable the assessment of both metabolic activation and immune reaction processes that ultimately result in DILI, are needed. Objective: In this study, the recent progress in the application of in vitro assays using cell culture systems is reviewed for potential DILI-causing drugs/xenobiotics and a mechanistic study on DILI, as well as for the limitations of in vitro cell culture systems for DILI research. Methods: Information related to DILI was collected through a literature search of the PubMed database. Results: The initial biological event for the onset of DILI is the formation of cellular protein adducts after drugs have been metabolically activated by drug metabolizing enzymes. The damaged peptides derived from protein adducts lead to the activation of CD4+ helper T lymphocytes and recognition by CD8+ cytotoxic T lymphocytes, which destroy hepatocytes through immunological reactions. Because DILI is a major cause of drug attrition and drug withdrawal, numerous in vitro systems consisting of hepatocytes and immune/inflammatory cells, or spheroids of human primary hepatocytes containing non-parenchymal cells have been developed. These cellular-based systems have identified DILIinducing drugs with approximately 50% sensitivity and 90% specificity. Conclusion: Different co-culture systems consisting of human hepatocyte-derived cells and other immune/inflammatory cells have enabled the identification of DILI-causing drugs and of the actual mechanisms of action.


Author(s):  
Kamni Rajput ◽  
Ramesh Chandra Dubey

In this paper, an investigation on lactic acid bacterial isolates from ethnic goat raw milk samples were examined for their probiotic potential and safety parameters. For this purpose, isolated bacterial cultures were screened based on certain parameters viz., sugar fermentation, tolerance to temperature, salt, low pH, bile salts, and phenol resistance. After that, these bacterial cultures were more estimated in vitro for auto-aggregation, cell surface hydrophobicity, response to simulated stomach duodenum channel, antibiotic resistance, and antimicrobial activity. Besides, probiotic traits show the absence of gelatinase and hemolytic activity supports its safety. The isolate G24 showed good viability at different pH, bile concentration, phenol resistance and response to simulated stomach duodenum passage but it did not show gelatinase and hemolytic activities. Isolate G24 was susceptible to amikacin, carbenicillin, kanamycin, ciprofloxacin, co-trimazine, nitrofurantoin, streptomycin, and tetracycline. Isolate G24 also exhibited antimicrobial action against five common pathogenic bacteria, such as Escherichia coli, Staphylococcus aureus, Pseudomonas aeruginosa, Listeria monocytogens, and Salmonella typhimurium. It displayed the maximum auto-aggregation, cell surface hydrophobicity to different hydrocarbons. Following molecular characterization the isolate G24 was identified as Enterococcus hirae with 16S rRNA gene sequencing and phylogeny. E. hirae G24 bears the excellent properties of probiotics.


1999 ◽  
Vol 62 (3) ◽  
pp. 252-256 ◽  
Author(s):  
C. GUSILS ◽  
A. PÉREZ CHAIA ◽  
S. GONZÁLEZ ◽  
G. OLIVER

Lactobacillus strains were tested for their in vitro probiotic properties. Cell surface hydrophobicity was found to be very high for Lactobacillus fermentum subsp. cellobiosus and Salmonella Gallinarum; high values could indicate a greater ability to adhere to epithelial cells. Studies on Lactobacillus animalis indicated relative cell surface hydrophobicities smaller than those of L. fermentum subsp. cellobiosus and L. fermentum. L. animalis and Enterococcus faecalis were able to coaggregate with L. fermentum subsp. cellobiosus and L. fermentum, respectively, but not with Salmonella Gallinarum. After mixed-culture studies for determining suitable growth behavior, the pair of strains L. animalis plus L. fermentum subsp. cellobiosus was selected for an attempted challenge against Salmonella Gallinarum. Double and triple mixed-culture studies indicated that selected lactobacillus strains were able to retain their beneficial characteristics in the presence of Salmonella Gallinarum such as presence of lectins, production of antimicrobial compounds, and ability to grow and compete. The selected microorganisms can be considered as potential ingredients for a chicken probiotic feed formulation intended to control salmonellosis and also improve poultry sanitation.


Sign in / Sign up

Export Citation Format

Share Document