Inhibition of Canonical Transient Receptor Potential 5 Channels Polarizes Macrophages to an M1 Phenotype

Pharmacology ◽  
2019 ◽  
Vol 105 (3-4) ◽  
pp. 202-208 ◽  
Author(s):  
Lerong Tao ◽  
Gang Guo ◽  
Yanyan Qi ◽  
Yong Xiong ◽  
Xueyu Ma ◽  
...  
2012 ◽  
Vol 303 (3) ◽  
pp. C308-C317 ◽  
Author(s):  
Jaladanki N. Rao ◽  
Navneeta Rathor ◽  
Ran Zhuang ◽  
Tongtong Zou ◽  
Lan Liu ◽  
...  

Early epithelial restitution occurs as a consequence of intestinal epithelial cell (IEC) migration after wounding, and its defective regulation is implicated in various critical pathological conditions. Polyamines stimulate intestinal epithelial restitution, but their exact mechanism remains unclear. Canonical transient receptor potential-1 (TRPC1)-mediated Ca2+ signaling is crucial for stimulation of IEC migration after wounding, and induced translocation of stromal interaction molecule 1 (STIM1) to the plasma membrane activates TRPC1-mediated Ca2+ influx and thus enhanced restitution. Here, we show that polyamines regulate intestinal epithelial restitution through TRPC1-mediated Ca2+ signaling by altering the ratio of STIM1 to STIM2. Increasing cellular polyamines by ectopic overexpression of the ornithine decarboxylase (ODC) gene stimulated STIM1 but inhibited STIM2 expression, whereas depletion of cellular polyamines by inhibiting ODC activity decreased STIM1 but increased STIM2 levels. Induced STIM1/TRPC1 association by increasing polyamines enhanced Ca2+ influx and stimulated epithelial restitution, while decreased formation of the STIM1/TRPC1 complex by polyamine depletion decreased Ca2+ influx and repressed cell migration. Induced STIM1/STIM2 heteromers by polyamine depletion or STIM2 overexpression suppressed STIM1 membrane translocation and inhibited Ca2+ influx and epithelial restitution. These results indicate that polyamines differentially modulate cellular STIM1 and STIM2 levels in IECs, in turn controlling TRPC1-mediated Ca2+ signaling and influencing cell migration after wounding.


2020 ◽  
Vol 2020 ◽  
pp. 1-13 ◽  
Author(s):  
Zhi-Chuan Sun ◽  
Sui-Bin Ma ◽  
Wen-Guang Chu ◽  
Dong Jia ◽  
Ceng Luo

Chronic pathological pain is one of the most intractable clinical problems faced by clinicians and can be devastating for patients. Despite much progress we have made in understanding chronic pain in the last decades, its underlying mechanisms remain elusive. It is assumed that abnormal increase of calcium levels in the cells is a key determinant in the transition from acute to chronic pain. Exploring molecular players mediating Ca2+ entry into cells and molecular mechanisms underlying activity-dependent changes in Ca2+ signaling in the somatosensory pain pathway is therefore helpful towards understanding the development of chronic, pathological pain. Canonical transient receptor potential (TRPC) channels form a subfamily of nonselective cation channels, which permit the permeability of Ca2+ and Na+ into the cells. Initiation of Ca2+ entry pathways by these channels triggers the development of many physiological and pathological functions. In this review, we will focus on the functional implication of TRPC channels in nociception with the elucidation of their role in the detection of external stimuli and nociceptive hypersensitivity.


2016 ◽  
Vol 311 (3) ◽  
pp. C482-C497 ◽  
Author(s):  
Jun Zhang ◽  
Wenju Lu ◽  
Yuqin Chen ◽  
Qian Jiang ◽  
Kai Yang ◽  
...  

The ubiquitin-proteasome system is considered to be the key regulator of protein degradation. Bortezomib (BTZ) is the first proteasome inhibitor approved by the US Food and Drug Administration for treatment of relapsed multiple myeloma and mantle cell lymphoma. Recently, BTZ treatment was reported to inhibit right ventricular hypertrophy and vascular remodeling in hypoxia-exposed and monocrotaline-injected rats. However, the underlying mechanisms remain poorly understood. We previously confirmed that hypoxia-elevated basal intracellular Ca2+ concentration ([Ca2+]i) and store-operated Ca2+ entry (SOCE) in pulmonary artery smooth muscle cells (PASMCs) are involved in pulmonary vascular remodeling. In this study we aim to determine whether BTZ attenuates the hypoxia-induced elevation of [Ca2+] in PASMCs and the signaling pathway involved in this mechanism. Our results showed that 1) in hypoxia- and monocrotaline-induced rat pulmonary hypertension (PH) models, BTZ markedly attenuated the development and progression of PH, 2) BTZ inhibited the hypoxia-induced increase in cell proliferation, basal [Ca2+]i, and SOCE in PASMCs, and 3) BTZ significantly normalized the hypoxia-upregulated expression of hypoxia-inducible factor-1α, bone morphogenetic protein 4, canonical transient receptor potential isoforms 1 and 6, and the hypoxia-downregulated expression of peroxisome proliferator-activated receptor-γ in rat distal pulmonary arteries and PASMCs. These results indicate that BTZ exerts its protective role in the development of PH potentially by inhibiting the canonical transient receptor potential-SOCE-[Ca2+]i signaling axis in PASMCs.


Sign in / Sign up

Export Citation Format

Share Document