scholarly journals Intentional Supernumerary Motor Phantom Limb after Right Cerebral Stroke: A Case Report

2021 ◽  
Vol 13 (1) ◽  
pp. 251-258
Author(s):  
Mai Yamada ◽  
Yoshimi Sasahara ◽  
Makiko Seto ◽  
Akira Satoh ◽  
Mitsuhiro Tsujihata

A 47-year-old right-handed man was admitted to our hospital for rehabilitation after right basal ganglion hematoma. On day 57, he noticed a supernumerary motor phantom limb (SPL) involving his right arm, originating at the level of the elbow. The most notable finding of his SPL was the motor characteristic. When the subject had the intention to move the upper paralyzed limb simultaneously with the trainer’s facilitating action, he said “there is another arm.” The intention to move the paralyzed arm alone or passive movement of the paralyzed arm did not induce the SPL. He showed a severe left sensorimotor impairment and mild hemineglect, but no neglect syndromes of the body (e.g., asomatognosia, somatoparaphrenia, personification and misoplegia, or anosognosia) were observed. Brain MRI demonstrated a hematoma in the right temporal lobe subcortex, subfrontal cortex, putamen, internal capsule, and thalamus. Single-photon emission computed tomography images showed more widespread hypoperfusion in the right hemisphere in comparison to the lesions on MRI. However, the premotor cortex was preserved. Our case is different from Staub’s case in that SPL was not induced by the intention to move the paralyzed limb alone; rather, it was induced when the patient intended to move the paralyzed limb with a trainer’s simultaneous facilitating action. The SPL may reflect that an abnormal closed-loop function of the thalamocortical system underlies the phantom phenomenon. However, despite the severe motor and sensory impairment, the afferent pathway from the periphery to the premotor cortex may have been partially preserved, and this may have been related to the induction of SPL.

BMC Neurology ◽  
2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Ya-Chi Chuang ◽  
Chuan-Ching Liu ◽  
I-Ching Yu ◽  
Yu-Lin Tsai ◽  
Shin-Tsu Chang

Abstract Background Global aphasia without hemiparesis (GAWH) is a rare stroke syndrome characterized by the dissociation of motor and language functions. Here, we present a case of GAWH with the patient later regaining speech fluency. Case presentation A 73-year-old man was admitted to our emergency department immediately after an episode of syncope. On arrival, we noted his global aphasia but without any focal neurologic signs. Computed tomography (CT) perfusion scans showed a large hypodense region over his left perisylvian area. Under the impression of acute ischaemic stroke, he received recombinant tissue plasminogen activator (rtPA) injection and was treated as an inpatient. The patient was later discharged with GAWH status and received regular speech rehabilitation. After 14 months of rehabilitation, the patient gradually recovered his language expression ability. The degree of aphasia was evaluated with the Concise Chinese Aphasia Test (CCAT), and we obtained brain single photon emission computed tomography (SPECT) scans to assess cerebral blood flow. Conclusion A patient with severe impairments of Broca’s and Wernicke’s areas was able to talk fluently despite being unintelligible. SPECT revealed relative high level of radioactivity uptake in the right frontal lobe, suggesting the deficits in speech fluency could have been compensated by the right hemisphere. Although this is a single case demonstration, the results may strengthen the role of the right hemisphere in GAWH patients and suggests additional study that examines the possible benefits of stimulating activity at right homologous regions for recovering language function after global aphasia.


2005 ◽  
Vol 93 (2) ◽  
pp. 1020-1034 ◽  
Author(s):  
Eiichi Naito ◽  
Per E. Roland ◽  
Christian Grefkes ◽  
H. J. Choi ◽  
Simon Eickhoff ◽  
...  

We have previously shown that motor areas are engaged when subjects experience illusory limb movements elicited by tendon vibration. However, traditionally cytoarchitectonic area 2 is held responsible for kinesthesia. Here we use functional magnetic resonance imaging and cytoarchitectural mapping to examine whether area 2 is engaged in kinesthesia, whether it is engaged bilaterally because area 2 in non-human primates has strong callosal connections, which other areas are active members of the network for kinesthesia, and if there is a dominance for the right hemisphere in kinesthesia as has been suggested. Ten right-handed blindfolded healthy subjects participated. The tendon of the extensor carpi ulnaris muscles of the right or left hand was vibrated at 80 Hz, which elicited illusory palmar flexion in an immobile hand (illusion). As control we applied identical stimuli to the skin over the processus styloideus ulnae, which did not elicit any illusions (vibration). We found robust activations in cortical motor areas [areas 4a, 4p, 6; dorsal premotor cortex (PMD) and bilateral supplementary motor area (SMA)] and ipsilateral cerebellum during kinesthetic illusions (illusion-vibration). The illusions also activated contralateral area 2 and right area 2 was active in common irrespective of illusions of right or left hand. Right areas 44, 45, anterior part of intraparietal region (IP1) and caudo-lateral part of parietal opercular region (OP1), cortex rostral to PMD, anterior insula and superior temporal gyrus were also activated in common during illusions of right or left hand. These right-sided areas were significantly more activated than the corresponding areas in the left hemisphere. The present data, together with our previous results, suggest that human kinesthesia is associated with a network of active brain areas that consists of motor areas, cerebellum, and the right fronto-parietal areas including high-order somatosensory areas. Furthermore, our results provide evidence for a right hemisphere dominance for perception of limb movement.


2012 ◽  
Vol 10 (2) ◽  
pp. 126-129 ◽  
Author(s):  
Kiyoshi Gomi ◽  
Mio Tanaka ◽  
Mariko Yoshida ◽  
Susumu Ito ◽  
Masaki Sonoda ◽  
...  

The authors report on a case of histiocytic sarcoma (HS) in a pediatric patient presenting with a solitary tumor in the cerebellum, with the aim of providing insight into primary HS in the CNS, which is especially rare. A 17-month-old Japanese girl presented with a 2-week history of progressive gait disturbance. Brain MRI revealed a 4.7 × 4.3 × 4.3–cm well-demarcated solitary mass in the right hemisphere of the cerebellum, initially suggestive of medulloblastoma, ependymoma, or anaplastic astrocytoma. On intraoperative inspection the cerebellar tumor showed intensive dural attachment and was subtotally removed. Histological and immunohistochemical findings were consistent with HS. The patient subsequently received chemotherapy, and her preoperative neurological symptoms improved. Primary HS in the CNS usually demonstrates an aggressive clinical course and is currently considered to have a poor prognosis. The possibility of this rare tumor should be included in the differential diagnosis of localized cerebellar tumors in the pediatric age group.


2007 ◽  
Vol 30 (2) ◽  
pp. 223-224 ◽  
Author(s):  
Giuseppe Vallar

AbstractThe model presented in the target article includes feature processing and higher representations. I argue, based on neuropsychological evidence, that spatial representations are also involved in perceptual awareness of somatosensory events. Second, there is an asymmetry, with a right-hemisphere–based bilateral representation of the body. Third, the specific aspect of bodily awareness concerning motor function monitoring involves a network that includes the premotor cortex.


2009 ◽  
Vol 15 (9) ◽  
pp. 1123-1125 ◽  
Author(s):  
JB Chanson ◽  
S Kremer ◽  
F Blanc ◽  
C Marescaux ◽  
IJ Namer ◽  
...  

Background Foreign accent syndrome (FAS) consists of a speech rhythm disorder different from dysarthia or aphasia. It is unusually met in multiple sclerosis (MS). Objective We report a case of FAS as an initial symptom of a MS. Methods A right-handed French woman developed an isolated German foreign accent. Brain magnetic resonance imaging (MRI), SPECT and analysis of CSF were performed. Results Brain MRI revealed a large hypersignal on T2-weighted images in the left prerolandic white matter. Single photon emission computed tomography showed a right prerolandic hypoperfusion. Unmatched oligoclonal bands in cerebrospinal fluid and occurrence of new abnormal hypersignals on the following MRI led us to diagnose MS. Conclusion FAS may be the first symptom of MS. It could result from extensive disturbances of brain function involving the right hemisphere.


2008 ◽  
Vol 99 (1) ◽  
pp. 166-186 ◽  
Author(s):  
Mikhail A. Lebedev ◽  
Joseph E. O'Doherty ◽  
Miguel A. L. Nicolelis

Neurophysiological, neuroimaging, and lesion studies point to a highly distributed processing of temporal information by cortico-basal ganglia-thalamic networks. However, there are virtually no experimental data on the encoding of behavioral time by simultaneously recorded cortical ensembles. We predicted temporal intervals from the activity of hundreds of neurons recorded in motor and premotor cortex as rhesus monkeys performed self-timed hand movements. During the delay periods, when animals had to estimate temporal intervals and prepare hand movements, neuronal ensemble activity encoded both the time that elapsed from the previous hand movement and the time until the onset of the next. The neurons that were most informative of these temporal intervals increased or decreased their rates throughout the delay until reaching a threshold value, at which point a movement was initiated. Variability in the self-timed delays was explainable by the variability of neuronal rates, but not of the threshold. In addition to predicting temporal intervals, the same neuronal ensemble activity was informative for generating predictions that dissociated the delay periods of the task from the movement periods. Left hemispheric areas were the best source of predictions in one bilaterally implanted monkey overtrained to perform the task with the right hand. However, after that monkey learned to perform the task with the left hand, its left hemisphere continued and the right hemisphere started contributing to the prediction. We suggest that decoding of temporal intervals from bilaterally recorded cortical ensembles could improve the performance of neural prostheses for restoration of motor function.


2017 ◽  
Vol 9 (1) ◽  
pp. 62-68
Author(s):  
Shinichirou Kubota ◽  
Mai Yamada ◽  
Hideyo Satoh ◽  
Akira Satoh ◽  
Mitsuhiro Tsujihata

A 54-year-old female showed amorphagnosia without ahylognosia and tactile agnosia 40 days after the onset of right cerebral infarction. Her basic somatosensory functions were normal. The appreciation of substance qualities (hylognosia) was preserved, but the patient’s inability to recognize the size and shape (morphagnosia) was confined to 2- and 3-dimensional shapes (amorphagnosia) in the left hand. However, the patient’s ability to recognize real daily objects was well preserved. Brain MRI after admission showed ischemic lesions confined to the right pre- and postcentral gyri and the medial frontal cortex on DWI and FLAIR images. An analysis of SPECT images revealed that the most decreased areas were localized to the pre- and postcentral gyri, superior and inferior parietal lobules, supramarginal gyrus, and angular gyrus. Considering the previous reported cases, the responsible lesion for the impaired perception of hylognosia and morphagnosia may not necessarily be confined to the right hemisphere. To date, 5 reports (6 cases) of tactile agnosia have been published; 4 cases presented with both ahylognosia and amorphagnosia, while 1 presented with only amorphagnosia, and another showed amorphagnosia and mild ahylognosia. Our case is the first to present with only amorphagnosia without tactile agnosia. The mechanism for the well-preserved recognition of real objects may depend on the preserved hylognosia. Of note, there have been no reports showing only ahylognosia without amorphagnosia. Further studies are necessary to clarify whether or not patients with preserved hylognosia or morphagnosia retain the ability to perceive real objects.


2009 ◽  
Vol 20 (11) ◽  
pp. 1373-1380 ◽  
Author(s):  
Sally A. Linkenauger ◽  
Jessica K. Witt ◽  
Jonathan Z. Bakdash ◽  
Jeanine K. Stefanucci ◽  
Dennis R. Proffitt

Perception of one's body is related not only to the physical appearance of the body, but also to the neural representation of the body. The brain contains many body maps that systematically differ between right- and left-handed people. In general, the cortical representations of the right arm and right hand tend to be of greater area in the left hemisphere than in the right hemisphere for right-handed people, whereas these cortical representations tend to be symmetrical across hemispheres for left-handers. We took advantage of these naturally occurring differences and examined perceived arm length in right- and left-handed people. When looking at each arm and hand individually, right-handed participants perceived their right arms and right hands to be longer than their left arms and left hands, whereas left-handed participants perceived both arms accurately. These experiments reveal a possible relationship between implicit body maps in the brain and conscious perception of the body.


1997 ◽  
Vol 9 (2) ◽  
pp. 171-190 ◽  
Author(s):  
Michael C. Mozer ◽  
Peter W. Halligan ◽  
John C. Marshall

For more than a century, it has been known that damage to the right hemisphere of the brain can cause patients to be unaware of the contralesional side of space. This condition, known as unilateral neglect, represents a collection of clinically related spatial disorders characterized by the failure in free vision to respond, explore, or orient to stimuli predominantly located on the side of space opposite the damaged hemisphere. Recent studies using the simple task of line bisection, a conventional diagnostic test, have proven surprisingly revealing with respect to the spatial and attentional impairments involved in neglect. In line bisection, the patient is asked to mark the midpoint of a thin horizontal lie on a sheet of paper. Neglect patients generally transect far to the right of the center. Extensive studies of line bisection have been conducted, manipulating-among other factors-line length, orientation, and position. We have simulated the pattern of results using an existing computational model of visual perception and selective attention called MORSEL (Mozer, 1991). MORSEL has already been used to model data in a related disorder, neglect dyslexia (Mozer & Behrmann, 1990). In this earlier work, MORSEL was “lesioned” in accordance with the damage we suppose to have occurred in the brains of neglect patients. The same model and lesion can simulate the detailed pattern of performance on line bisection, including the following observations: (1) no consistent across-subject bias is found in normals; (2) transection displacements are proportional to line length in neglect patients; (3) variability of displacements is proportional to line length, in both normals and patients; (4) position of the lines with respect to the body or the page on which they are drawn has little effect; and (5) for lines drawn at different orientations, displacements are proportional to the cosine of the orientation angle. MORSEL fails to account for one observation: across patients, the variability of displacements for a particular line length is roughly proportional to mean displacement. Nonetheless, the overall fit of the model is sufficiently good that we believe MORSEL can be used as a diagnostic tool to characterize the specific nature of a patient's deficit, and thereby has potential down the line in therapy.


2021 ◽  
Vol 11 (9) ◽  
pp. 1203 ◽  
Author(s):  
Sara Borgomaneri ◽  
Francesca Vitale ◽  
Simone Battaglia ◽  
Alessio Avenanti

The ability to rapidly process others’ emotional signals is crucial for adaptive social interactions. However, to date it is still unclear how observing emotional facial expressions affects the reactivity of the human motor cortex. To provide insights on this issue, we employed single-pulse transcranial magnetic stimulation (TMS) to investigate corticospinal motor excitability. Healthy participants observed happy, fearful and neutral pictures of facial expressions while receiving TMS over the left or right motor cortex at 150 and 300 ms after picture onset. In the early phase (150 ms), we observed an enhancement of corticospinal excitability for the observation of happy and fearful emotional faces compared to neutral expressions specifically in the right hemisphere. Interindividual differences in the disposition to experience aversive feelings (personal distress) in interpersonal emotional contexts predicted the early increase in corticospinal excitability for emotional faces. No differences in corticospinal excitability were observed at the later time (300 ms) or in the left M1. These findings support the notion that emotion perception primes the body for action and highlights the role of the right hemisphere in implementing a rapid and transient facilitatory response to emotional arousing stimuli, such as emotional facial expressions.


Sign in / Sign up

Export Citation Format

Share Document