scholarly journals Response to Regarding Microbiological Control of Cellular Products: The Relevance of the Cellular Matrix, Incubation Temperature, and Atmosphere for the Detection Performance of Automated Culture Systems. Transfus Med Hemother. 2020;47:254–63

2021 ◽  
pp. 1-1
Author(s):  
Frank Günther
2019 ◽  
Vol 47 (3) ◽  
pp. 254-263
Author(s):  
Susanne-Katharina Günther ◽  
Celina Geiss ◽  
Stefan J. Kaiser ◽  
Nico T. Mutters ◽  
Frank Günther

Background: The microbiological control of cellular products sometimes causes significant procedural issues for quality control laboratories. According to the European Pharmacopoeia (EP), the microbiological control of cellular products requires a 7- to 14-day incubation period at two different incubation temperatures using aerobic and anaerobic growth media. However, the suitability of these test conditions for efficient quality control can be influenced by many conditions, such as the expected microbial spectrum of contamination or the texture and composition of the cellular product. Because of interference, direct inoculation and membrane filtration as reference methods of pharmacopoeia are largely unsuitable for the microbiological control of cellular products; therefore, alternative and, above all, automated methods are the focus of interest. Objective: The aim of our study was to evaluate the method suitability and possible effects of cell matrix, incubation temperature, and oxygen pressure on the detection performance of automated culture systems. Methods: The BacT/ALERT® 3DTM Dual T system (bioMérieux, Nürtingen, Germany) was used to evaluate the factors influencing automated microbiological control of cellular products. The tests were performed using microbial strains recommended by the EP for microbiological method suitability testing and additional relevant possible contaminants of human-derived stem-cell products under varying culture and cell matrix conditions. Results: All contaminants were detected by the system in the required period of 2–5 days. Low incubation temperatures (22°C) had overall negative effects on the detection kinetics of each type of microbial contamination. The adverse effects of the accompanying cell matrix on the detection properties of the system could be compensated in our study by incubation at 32°C in both the aerobic and the anaerobic culture conditions. Conclusion: Automated culture techniques represent a sufficient approach for the microbiological control of cellular products. The negative effects of the cell matrix and microbial contamination on the detection performance can be compensated by the application of variable culture conditions in the automated culture system.


Author(s):  
A. R. Crooker ◽  
M. C. Myers ◽  
T. L. Beard ◽  
E. S. Graham

Cell culture systems have become increasingly popular as a means of screening toxic agents and studying toxic mechanisms of drugs and other chemicals at the cellular and subcellular levels. These in vitro tests can be conducted rapidly in a broad range of relevant mammalian culture systems; a variety of biological and biochemical cytotoxicity endpoints can be examined. The following study utilized human keratinocytes to evaluate the relative cytotoxicities of nitrofurazone (NF) and silver sulfadiazine (SS), the active ingredients of FURACIN(R) Topical Cream and SILVADENE(R) Cream, respectively. These compounds are anti-infectives used in the treatment of burn patients. Cell ultrastructure and elemental composition were utilized as cytotoxicity endpoints.Normal Human Epidermal Keratinocytes (HK) were prepared from the EpiPackTM culture system (Clonetics Corporation, Boulder, CO). For scanning electron microscopy (SEM) and transmission electron microscopy (TEM), cells were seeded on sterile 35 mm Falcon plastic dishes; for elemental microanalysis, cells were plated on polished pyrolytic carbon discs (E. Fullam, Latham, NY) placed in the culture dishes.


2011 ◽  
Vol 59 (S 01) ◽  
Author(s):  
M Franz ◽  
A Berndt ◽  
K Grün ◽  
D Neri ◽  
H Kosmehl ◽  
...  

Planta Medica ◽  
2015 ◽  
Vol 81 (16) ◽  
Author(s):  
YA Jeon ◽  
HS Lee ◽  
ES Park ◽  
YY Lee ◽  
JS Sung ◽  
...  

2020 ◽  
Vol 3 (1) ◽  
pp. ACCEPTED
Author(s):  
Rho-Jeong Rae

This study investigated the boreal digging frog, Kaloula borealis, to determine the egg hatching period and whether the hatching period is affected by incubation temperature. The results of this study showed that all the eggs hatched within 48 h after spawning, with 28.1% (±10.8, n=52) hatching within 24 h and 99.9% (±0.23, n=49) within 48 h after spawning. A significant difference was noted in the mean hatching proportion of tadpoles at different water temperatures. The mean hatching rates between 15 and 24 h after spawning was higher at a water temperature of 21.1 (±0.2) °C than at 24.1 (±0.2) °C. These results suggest that incubation temperature affected the early life stages of the boreal digging frog, since they spawn in ponds or puddles that form during the rainy season.


2018 ◽  
Author(s):  
Fantuzzi Federica ◽  
Toivonen Sanna ◽  
Schiavo Andrea Alex ◽  
Pachera Nathalie ◽  
Rajaei Bahareh ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document