scholarly journals GFAP-Negative Subcutaneous Sacrococcygeal Extraspinal Ependymoma

2021 ◽  
pp. 293-297
Author(s):  
Kazuya Goto ◽  
Hiroko Fujii ◽  
Gen Honjo ◽  
Satoshi Kore-eda

Ependymomas are slowly growing glial tumors derived from the ependymal cells and usually occur in the central nervous system (CNS). Ependymomas rarely occur outside of the CNS and they are called extraspinal ependymomas. In spite of their metastatic potential, extraspinal ependymomas can be misdiagnosed for other benign mass like pilonidal cysts. The diagnosis is confirmed by histopathology and most of the cases are known to show glial fibrillary acidic protein (GFAP), S-100 protein, and keratin (AE1AE3) immunoreactivity. Herein, we present a case of GFAP-negative ependymoma, which presented as asymptomatic subcutaneous tumor of the left buttock and was clinically misdiagnosed as epidermal cyst. Our case indicates that ependymomas cannot be ruled out by lack of GFAP immunoreactivity and an asymptomatic subcutaneous mass could be a malignant tumor like ependymomas, which requires careful examinations.

Author(s):  
Simon Schieferdecker ◽  
Stefan Hunsche ◽  
Faycal El Majdoub ◽  
Mohammad Maarouf

AbstractIn this case report, the authors describe the first case of a glioependymal cyst of the brainstem managed by robot-assisted, stereotactic, cysto-ventricular shunting. Glioependymal cysts are rare congenital cystic lesions that are thought to form by displacement of ependymal cells during the embryonal period. Glioependymal cysts have been reported in a variety of different locations within the central nervous system. However, glioependymal cysts of the brainstem have only been described once before. Here, we report the case of a 53-year-old man who was referred to our department due to hemiparesis, hemihypesthesia, and hemidysesthesia, as well as facial and abducens nerve palsy. A large pontine glioependymal cyst was confirmed via magnetic resonance imaging (MRI) scans. The cyst was subsequently decompressed by connecting the cyst with the fourth ventricle via robot-assisted stereotactic shunt placement. In the postoperative course, the patient made a quick recovery and did not report any permanent neurologic deficits.


1989 ◽  
Vol 14 (8) ◽  
pp. 761-764 ◽  
Author(s):  
Armen Simonian ◽  
Jacques Baudier ◽  
Kenneth G. Haglid

2018 ◽  
Vol 92 (23) ◽  
Author(s):  
Danica M. Sutherland ◽  
Pavithra Aravamudhan ◽  
Melanie H. Dietrich ◽  
Thilo Stehle ◽  
Terence S. Dermody

ABSTRACTViral capsid components that bind cellular receptors mediate critical functions in viral tropism and disease pathogenesis. Mammalian orthoreoviruses (reoviruses) spread systemically in newborn mice to cause serotype-specific disease in the central nervous system (CNS). Serotype 1 (T1) reovirus infects ependymal cells to cause nonlethal hydrocephalus, whereas serotype 3 (T3) reovirus infects neurons to cause fulminant and lethal encephalitis. This serotype-dependent difference in tropism and concomitant disease is attributed to the σ1 viral attachment protein, which is composed of head, body, and tail domains. To identify σ1 sequences that contribute to tropism for specific cell types in the CNS, we engineered a panel of viruses expressing chimeric σ1 proteins in which discrete σ1 domains have been reciprocally exchanged. Parental and chimeric σ1 viruses were compared for replication, tropism, and disease induction following intracranial inoculation of newborn mice. Viruses expressing T1 σ1 head sequences infect the ependyma, produce relatively lower titers in the brain, and do not cause significant disease. In contrast, viruses expressing T3 σ1 head sequences efficiently infect neurons, replicate to relatively higher titers in the brain, and cause a lethal encephalitis. Additionally, T3 σ1 head-expressing viruses display enhanced infectivity of cultured primary cortical neurons compared with T1 σ1 head-expressing viruses. These results indicate that T3 σ1 head domain sequences promote infection of neurons, likely by interaction with a neuron-specific receptor, and dictate tropism in the CNS and induction of encephalitis.IMPORTANCEViral encephalitis is a serious and often life-threatening inflammation of the brain. Mammalian orthoreoviruses are promising oncolytic therapeutics for humans but establish virulent, serotype-dependent disease in the central nervous system (CNS) of many young mammals. Serotype 1 reoviruses infect ependymal cells and produce hydrocephalus, whereas serotype 3 reoviruses infect neurons and cause encephalitis. Reovirus neurotropism is hypothesized to be dictated by the filamentous σ1 viral attachment protein. However, it is not apparent how this protein mediates disease. We discovered that sequences forming the most virion-distal domain of T1 and T3 σ1 coordinate infection of either ependyma or neurons, respectively, leading to mutually exclusive patterns of tropism and disease in the CNS. These studies contribute new knowledge about how reoviruses target cells for infection in the brain and inform the rational design of improved oncolytic therapies to mitigate difficult-to-treat tumors of the CNS.


2002 ◽  
Vol 83 (5) ◽  
pp. 1095-1105 ◽  
Author(s):  
Miki Ida-Hosonuma ◽  
Takuya Iwasaki ◽  
Choji Taya ◽  
Yuko Sato ◽  
Jifen Li ◽  
...  

In order to determine the influence of poliovirus receptor (PVR) expression on poliovirus cell tropism and neuropathogenesis, two transgenic (tg) mouse models were produced in which PVR was expressed under the transcriptional control of the human PVR gene promoter (hg–PVR mice) and the CAG promoter (CAG–PVR mice). Then the pathogenicity of poliovirus after intracerebral inoculation of the type 1 Mahoney strain was compared. These showed completely different clinical and pathological changes. In the former, the expression of PVR in neurons in the central nervous system (CNS) confered susceptibility to poliovirus, and a paralytic disease that resembled the human poliomyelitis occurred. In the latter, PVR expression was detected in glial and ependymal cells in addition to the neurons. Paralysis of the limbs and death were rarely observed and mice survived without showing substantial clinical abnormality. Histopathological examination revealed that glial and ependymal cells also became susceptible to poliovirus infection. Poliovirus antigens were mainly detected in ependymal and glial cells and hippocampal neurons near the lateral ventricles in the brain, but were not frequently detected in neurons in the brainstem unlike in the hg–PVR mice. The levels of viral antigens and virus recovered from the CNS of CAG–PVR mice began to decrease as early as 2 days after inoculation, which suggested induction of a fast immune response. These results suggest that the neuropathogenicity of poliovirus changes markedly depending on the specific expression of the PVR molecule in the CNS.


Antioxidants ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 22
Author(s):  
Tina Smolič ◽  
Robert Zorec ◽  
Nina Vardjan

In recent years, increasing evidence regarding the functional importance of lipid droplets (LDs), cytoplasmic storage organelles in the central nervous system (CNS), has emerged. Although not abundantly present in the CNS under normal conditions in adulthood, LDs accumulate in the CNS during development and aging, as well as in some neurologic disorders. LDs are actively involved in cellular lipid turnover and stress response. By regulating the storage of excess fatty acids, cholesterol, and ceramides in addition to their subsequent release in response to cell needs and/or environmental stressors, LDs are involved in energy production, in the synthesis of membranes and signaling molecules, and in the protection of cells against lipotoxicity and free radicals. Accumulation of LDs in the CNS appears predominantly in neuroglia (astrocytes, microglia, oligodendrocytes, ependymal cells), which provide trophic, metabolic, and immune support to neuronal networks. Here we review the most recent findings on the characteristics and functions of LDs in neuroglia, focusing on astrocytes, the key homeostasis-providing cells in the CNS. We discuss the molecular mechanisms affecting LD turnover in neuroglia under stress and how this may protect neural cell function. We also highlight the role (and potential contribution) of neuroglial LDs in aging and in neurologic disorders.


2020 ◽  
Vol 4 (35) ◽  
pp. 34-39
Author(s):  
I. Yu. Serikova ◽  
G. I. Shumacher ◽  
E. N. Vorobyova ◽  
I. A. Batanina ◽  
R. I. Vorobyov

The aim of this study is to identify clinical and biochemical predictors of neurological disorders in adolescents who have suffered mild perinatal damage of the central nervous system. We examined 120 adolescents (62 girls and 58 boys) aged 13–16 years, who were hospitalized in the city Children’s Neurological Department. It was found that adolescents with perinatal lesions of the central nervous system, activated lipid peroxidation processes and revealed an increase in the concentration of protein S 100, which in the future could lead to the development of neurodegeneration processes. In addition, a positive correlation between the lipid peroxidation processes nd the concentration of the nerve tissue damage marker was revealed. The results indicate that the level of neurospecific protein — protein S 100, parameters of the oxidant‑antioxidant system, perinatal factors can be used as predictors of chronic nervous tissue processes.


2015 ◽  
Vol 59 (2) ◽  
pp. 219-224 ◽  
Author(s):  
Sangho Lee ◽  
Na Rae Kim ◽  
Dong Hae Chung ◽  
Gi-Taek Yee ◽  
Hyun Yee Cho

Background: Intracranial chondrosarcoma is rare, and most cases occur in the skull base. Intradural chondrosarcoma is even rarer. Case: Here, we describe a case of dural chondrosarcoma with a radiation history for nasopharyngeal carcinoma and a radical prostatectomy for prostatic cancer 15 and 8 years earlier, respectively. A 67-year-old man presented with a 3-week memory disturbance and dysarthria. Computed tomography and magnetic resonance images of the brain revealed a dural-based mass in the left temporal area. Under the impression of a glioblastoma, a resection and an intraoperative squash cytology were done. A necrotic dirty background as well as bluish-to-pinkish myxoid stroma were characteristic; the nuclei of highly pleomorphic tumor cells were hyperchromatic to vesicular with an occasional ground-glass appearance. The cytoplasm was of an eosinophilic hyalinized condensed morphology with an occasional granular appearance. Histologically, the lobulated mass was composed of hypercellular lobules of well-differentiated chondrocytes intermixed with anaplastic pleomorphic cells and diagnosed as a conventional grade III chondrosarcoma. These cells were immunoreactive for D2-40, S-100 protein and vimentin. Brain invasion was also found. Conclusion: Albeit rare, dural-based chondrosarcomas should be considered in the differential diagnosis for meningeal tumors, especially in the case of previous radiation therapy.


2015 ◽  
Vol 35 (7) ◽  
pp. 685-690
Author(s):  
Eduardo F. Bondan ◽  
Maria de Fátima M. Martins ◽  
Rita Sinigaglia-Coimbra ◽  
Rose Eli G. Rici ◽  
Maria Angélica Miglino ◽  
...  

Abstract Although ultrastructural characteristics of mature neuroglia in the central nervous system (CNS) are very well described in mammals, much less is known in reptiles, especially serpents. In this context, two specimens of Bothrops jararaca were euthanized for morphological analysis of CNS glial cells. Samples from telencephalon, mesencephalon and spinal cord were collected and processed for light and transmission electron microscopy investigation. Astrocytes, oligodendrocytes, microglial cells and ependymal cells, as well as myelin sheaths, presented similar ultrastructural features to those already observed in mammals and tended to maintain their general aspect all over the distinct CNS regions observed. Morphological similarities between reptilian and mammalian glia are probably linked to their evolutionary conservation throughout vertebrate phylogeny.


Sign in / Sign up

Export Citation Format

Share Document