Multimorbidity and Regional Volumes of the Default Mode Network in Brain Aging

Gerontology ◽  
2021 ◽  
pp. 1-10
Author(s):  
Jen-Hung Wang ◽  
Joshua Oon Soo Goh ◽  
Yu-Ling Chang ◽  
Shu-Cin Chen ◽  
Yu-Ying Li ◽  
...  

<b><i>Introduction:</i></b> The default mode network (DMN) is selectively vulnerable in brain aging. Little is known about the effect of multimorbidity as a whole onto the brain structural integrity. <b><i>Objective:</i></b> We aimed to investigate the association between multimorbidity and the structural integrity of DMN. <b><i>Methods:</i></b> We enrolled senior volunteers aged between 60 and 80 years in Hualien County during 2014–2018 and conducted in-person interview to collect information on chronic diseases. Fasting blood glucose and glycated hemoglobin (HbA1c) were tested. We assessed multimorbidity burden by the cumulative illness rating scale-geriatric (CIRS-G). MRI brain scans were standardized to measure the regional volume within the DMN. In a cross-sectional design, we employed stepwise regression models to evaluate the effects of age, sex, hyperglycemia, and multimorbidity on the DMN. <b><i>Results:</i></b> A total of 170 volunteers were enrolled with a mean age of 66.9 years, female preponderance (71%), an average mini-mental state examination score of 27.6, a mean HbA1c of 6.0, and a mean CIRS-G total score (TS) of 7.2. We found that older age was associated with reduced volumes in the hippocampus, left rostral anterior cingulate cortex, right posterior cingulate, right isthmus, precuneus, and right supramarginal. Higher levels of HbA1c and fasting glucose were associated with a reduced volume in the hippocampus only. A higher CIRS-G-TS was associated with reduced volumes in the left posterior cingulate cortex and right supramarginal gyrus; while a higher CIRS-G severity index was associated with a smaller right precuneus and right supramarginal. <b><i>Conclusions:</i></b> In the DMN, hippocampal volume shows vulnerability to aging and hyperglycemia, whereas the posterior cingulate, supramarginal, and precuneus cortices may be the key sites to reflect the total effects of multimorbidity.

2021 ◽  
Vol 15 ◽  
Author(s):  
Mohammad S. E. Sendi ◽  
Elaheh Zendehrouh ◽  
Charles A. Ellis ◽  
Zhijia Liang ◽  
Zening Fu ◽  
...  

Background: Schizophrenia affects around 1% of the global population. Functional connectivity extracted from resting-state functional magnetic resonance imaging (rs-fMRI) has previously been used to study schizophrenia and has great potential to provide novel insights into the disorder. Some studies have shown abnormal functional connectivity in the default mode network (DMN) of individuals with schizophrenia, and more recent studies have shown abnormal dynamic functional connectivity (dFC) in individuals with schizophrenia. However, DMN dFC and the link between abnormal DMN dFC and symptom severity have not been well-characterized.Method: Resting-state fMRI data from subjects with schizophrenia (SZ) and healthy controls (HC) across two datasets were analyzed independently. We captured seven maximally independent subnodes in the DMN by applying group independent component analysis and estimated dFC between subnode time courses using a sliding window approach. A clustering method separated the dFCs into five reoccurring brain states. A feature selection method modeled the difference between SZs and HCs using the state-specific FC features. Finally, we used the transition probability of a hidden Markov model to characterize the link between symptom severity and dFC in SZ subjects.Results: We found decreases in the connectivity of the anterior cingulate cortex (ACC) and increases in the connectivity between the precuneus (PCu) and the posterior cingulate cortex (PCC) (i.e., PCu/PCC) of SZ subjects. In SZ, the transition probability from a state with weaker PCu/PCC and stronger ACC connectivity to a state with stronger PCu/PCC and weaker ACC connectivity increased with symptom severity.Conclusions: To our knowledge, this was the first study to investigate DMN dFC and its link to schizophrenia symptom severity. We identified reproducible neural states in a data-driven manner and demonstrated that the strength of connectivity within those states differed between SZs and HCs. Additionally, we identified a relationship between SZ symptom severity and the dynamics of DMN functional connectivity. We validated our results across two datasets. These results support the potential of dFC for use as a biomarker of schizophrenia and shed new light upon the relationship between schizophrenia and DMN dynamics.


2019 ◽  
Vol 53 (8) ◽  
pp. 794-806 ◽  
Author(s):  
Jooyoung Oh ◽  
Jung Eun Shin ◽  
Kyu Hyun Yang ◽  
Sunghyon Kyeong ◽  
Woo Suk Lee ◽  
...  

Objective: Delirium is an acute brain failure related to uncertain problems in neural connectivity, including aberrant functional interactions between remote cortical regions. This study aimed to elucidate the underlying neural mechanisms of delirium by clarifying the changes in resting-state functional connectivity induced by postoperative delirium using imaging data scanned before and after surgery. Method: Fifty-eight patients with a femoral neck fracture were preoperatively scanned using resting-state functional magnetic resonance imaging. Twenty-five patients developed postoperative delirium, and 14 of those had follow-up scans during delirium. Eighteen patients without delirium completed follow-up scans 5 or 6 days after surgery. We assessed group differences in voxel-based connectivity, in which the seeds were the posterior cingulate cortex, medial prefrontal cortex and 11 subcortical regions. Connections between the subcortical regions were also examined. Results: The results showed four major findings during delirium. Both the posterior cingulate cortex and medial prefrontal cortex were strongly connected to the dorsolateral prefrontal cortex. The posterior cingulate cortex had hyperconnectivity with the inferior parietal lobule, whereas the medial prefrontal cortex had hyperconnectivity with the frontopolar cortex and hypoconnectivity with the superior frontal gyrus. Connectivity of the striatum with the anterior cingulate cortex and insula was increased. Disconnections were found between the lower subcortical regions including the neurotransmitter origins and the striatum/thalamus in the upper level. Conclusions: Our findings suggest that cortical dysfunction during delirium is characterized by a diminution of the anticorrelation between the default mode network and task-positive regions, excessive internal connections in the posterior default mode network and a complex imbalance of internal connectivity in the anterior default mode network. These dysfunctions can be attributed to the loss of reciprocity between the default mode network and central executive network associated with defective function in the salience network, which might be closely linked to aberrant subcortical neurotransmission-related connectivity and striato-cortical connectivity.


Neurology ◽  
2018 ◽  
Vol 90 (11) ◽  
pp. e932-e939 ◽  
Author(s):  
Joseph Therriault ◽  
Kok Pin Ng ◽  
Tharick A. Pascoal ◽  
Sulantha Mathotaarachchi ◽  
Min Su Kang ◽  
...  

ObjectiveTo identify the pathophysiologic mechanisms and clinical significance of anosognosia for cognitive decline in mild cognitive impairment.MethodsWe stratified 468 patients with amnestic mild cognitive impairment into intact and impaired awareness groups, determined by the discrepancy between the patient and the informant score on the Everyday Cognition questionnaire. Voxel-based linear regression models evaluated the associations between self-awareness status and baseline β-amyloid load, measured by [18F]florbetapir, and the relationships between awareness status and regional brain glucose metabolism measured by [18F]fluorodeoxyglucose at baseline and at 24-month follow-up. Multivariate logistic regression tested the association of awareness status with conversion from amnestic mild cognitive impairment to dementia.ResultsWe found that participants with impaired awareness had lower [18F]fluorodeoxyglucose uptake and increased [18F]florbetapir uptake in the posterior cingulate cortex at baseline. In addition, impaired awareness in mild cognitive impairment predicted [18F]fluorodeoxyglucose hypometabolism in the posterior cingulate cortex, left basal forebrain, bilateral medial temporal lobes, and right lateral temporal lobe over 24 months. Furthermore, participants with impaired awareness had a nearly 3-fold increase in likelihood of conversion to dementia within a 2-year time frame.ConclusionsOur results suggest that anosognosia is linked to Alzheimer disease pathophysiology in vulnerable structures, and predicts subsequent hypometabolism in the default mode network, accompanied by an increased risk of progression to dementia. This highlights the importance of assessing awareness of cognitive decline in the clinical evaluation and management of individuals with amnestic mild cognitive impairment.


2008 ◽  
Vol 38 (8) ◽  
pp. 1185-1193 ◽  
Author(s):  
E. Pomarol-Clotet ◽  
R. Salvador ◽  
S. Sarró ◽  
J. Gomar ◽  
F. Vila ◽  
...  

BackgroundFunctional imaging studies using working memory tasks have documented both prefrontal cortex (PFC) hypo- and hyperactivation in schizophrenia. However, these studies have often failed to consider the potential role of task-related deactivation.MethodThirty-two patients with chronic schizophrenia and 32 age- and sex-matched normal controls underwent functional magnetic resonance imaging (fMRI) scanning while performing baseline, 1-back and 2-back versions of the n-back task. Linear models were used to obtain maps of activations and deactivations in the groups.ResultsThe controls showed activation in the expected frontal regions. There were also clusters of deactivation, particularly in the anterior cingulate/ventromedial PFC and the posterior cingulate cortex/precuneus. Compared to the controls, the schizophrenic patients showed reduced activation in the right dorsolateral prefrontal cortex (DLPFC) and other frontal areas. There was also an area in the anterior cingulate/ventromedial PFC where the patients showed apparently greater activation than the controls. This represented a failure of deactivation in the schizophrenic patients. Failure to activate was a function of the patients' impaired performance on the n-back task, whereas the failure to deactivate was less performance dependent.ConclusionsPatients with schizophrenia show both failure to activate and failure to deactivate during performance of a working memory task. The area of failure of deactivation is in the anterior prefrontal/anterior cingulate cortex and corresponds to one of the two midline components of the ‘default mode network’ implicated in functions related to maintaining one's sense of self.


2021 ◽  
Vol 11 ◽  
Author(s):  
Jun Zhou ◽  
Xiaoqian Ma ◽  
Chunwang Li ◽  
Aijun Liao ◽  
Zihao Yang ◽  
...  

Objective: This study aimed to examine the treatment-related changes of the fractional amplitude of low-frequency fluctuations (fALFF) in the default mode network (DMN) across different bands after the medication-free patients with bipolar II depression received a 16-week treatment of escitalopram and lithium.Methods: A total of 23 medication-free patients with bipolar II depression and 29 healthy controls (HCs) were recruited. We evaluated the fALFF values of slow 4 (0.027–0.073 Hz) band and slow 5 (0.01–0.027 Hz) band of the patients and compared the results with those of the 29 HCs at baseline. After 16-week treatment of escitalopram with lithium, the slow 4 and slow 5 fALFF values of the patients were assessed and compared with the baselines of patients and HCs. The depressive symptoms of bipolar II depression in patients were assessed with a 17-item Hamilton Depression Rating Scale (HDRS) before and after treatment.Results: Treatment-related effects showed increased slow 5 fALFF in cluster D (bilateral medial superior frontal gyrus, bilateral superior frontal gyrus, right middle frontal gyrus, and bilateral anterior cingulate), cluster E (bilateral precuneus/posterior cingulate, left cuneus), and cluster F (left angular, left middle temporal gyrus, left superior temporal gyrus, and left supramarginal gyrus) in comparison with the baseline of the patients. Moreover, a positive association was found between the increase in slow 5 fALFF values (follow-up value minus the baseline values) in cluster D and the decrease in HDRS scores (baseline HDRS scores minus follow-up HDRS scores) at follow-up, and the same association between the increase in slow 5 fALFF values and the decrease in HDRS scores was found in cluster E.Conclusions: The study reveals that the hypoactivity of slow 5 fALFF in the DMN is related to depression symptoms and might be corrected by the administration of escitalopram with lithium, implying that slow 5 fALFF of the DMN plays a key role in bipolar depression.


2017 ◽  
Vol 114 (36) ◽  
pp. 9713-9718 ◽  
Author(s):  
Wei Tang ◽  
Hesheng Liu ◽  
Linda Douw ◽  
Mark A. Kramer ◽  
Uri T. Eden ◽  
...  

Segregation and integration are distinctive features of large-scale brain activity. Although neuroimaging studies have been unraveling their neural correlates, how integration takes place over segregated modules remains elusive. Central to this problem is the mechanism by which a brain region adjusts its activity according to the influence it receives from other regions. In this study, we explore how dynamic connectivity between two regions affects the neural activity within a participating region. Combining functional magnetic resonance imaging (fMRI) and magnetoencephalography (MEG) in the same group of subjects, we analyzed resting-state data from the core of the default-mode network. We observed directed influence from the posterior cingulate cortex (PCC) to the anterior cingulate cortex (ACC) in the 10-Hz range. This time-varying influence was associated with the power alteration in the ACC: strong influence corresponded with a decrease of power around 13–16 Hz and an increase of power in the lower (1–7 Hz) and higher (30–55 Hz) ends of the spectrum. We also found that the amplitude of the 30- to 55-Hz activity was coupled to the phase of the 3- to 4-Hz activity in the ACC. These results characterized the local spectral changes associated with network interactions. The specific spectral information both highlights the functional roles of PCC–ACC connectivity in the resting state and provides insights into the dynamic relationship between local activity and coupling dynamics of a network.


Sign in / Sign up

Export Citation Format

Share Document