Clinical Implications of Chromosome 16 Copy Number Variation

2021 ◽  
pp. 1-9
Author(s):  
Emine Ikbal Atli ◽  
Sinem Yalcintepe ◽  
Engin Atli ◽  
Selma Demir ◽  
Cisem Mail ◽  
...  

Chromosome 16 is one of the gene-rich chromosomes; however, approximately 10% of the chromosome 16 sequence is composed of segmental copies, which renders this chromosome instable and predisposes it to rearrangements via frequent nonallelic homologous recombination. Microarray technologies have enabled the analysis of copy number variations (CNV), which may be associated with the risk of developing complex diseases. Through comparative genomic hybridisation in 1,298 patients, we detected 18 cases with chromosome 16 CNV. We identified 2recurrent CNV regions, including 1 at 16p13.11 in 4 patients and another at 16p11.2 in 7 patients. We also detected atypical chromosome 16 rearrangements in 7 patients. Furthermore, we noted an increased frequency of co-occurring genomic changes, supporting the two-hit hypothesis to explain the phenotypic variability in the clinical presentation of CNV syndromes. Our findings can contribute to the creation of a chromosome 16 disease map based on regions that may be associated with disease development.

Pathology ◽  
2017 ◽  
Vol 49 (3) ◽  
pp. 285-291 ◽  
Author(s):  
Nima Mesbah Ardakani ◽  
Carla Thomas ◽  
Cleo Robinson ◽  
Kym Mina ◽  
Nathan Tobias Harvey ◽  
...  

2012 ◽  
Vol 19 (8) ◽  
pp. 1014-1021 ◽  
Author(s):  
JP McElroy ◽  
LB Krupp ◽  
BA Johnson ◽  
JL McCauley ◽  
Z Qi ◽  
...  

Background: Pediatric onset multiple sclerosis (MS) accounts for 2-4% of all MS. It is unknown whether the disease shares the same underlying pathophysiology found in adult patients or an extreme early onset phenotype triggered by distinct biological mechanisms. It has been hypothesized that copy number variations (CNVs) may result in extreme early onset diseases because CNVs can have major effects on many genes in large genomic regions. Objectives and methods: The objective of the current research was to identify CNVs, with a specific focus on de novo CNVs, potentially causing early onset MS by competitively hybridizing 30 white non-Hispanic pediatric MS patients with each of their parents via comparative genomic hybridization (CGH) analysis on the Agilent 1M CGH array. Results and discussion: We identified 10 CNVs not overlapping with any CNV regions currently reported in the Database of Genomic Variants (DGV). Fifty-five putatively de novo CNVs were also identified: all but one common in the DGV. We found the single rare CNV was a private variation harboring the SACS gene. SACS mutations cause autosomal-recessive spastic ataxia of Charlevoix-Saguenay (ARSACS) disease. Additional clinical review revealed that the patient with the SACS gene CNV shared some features of both MS and ARSACS. Conclusions: This is the first reported study analyzing pediatric MS CNVs. While not yielding causal variation in our initial pediatric dataset, our approach confirmed diagnosis of an ARSACS-like disease in addition to MS in the affected individual, which led to a more complete understanding of the patient’s disease course and prognosis.


2019 ◽  
Vol 20 (5) ◽  
pp. 1095 ◽  
Author(s):  
Serena Redaelli ◽  
Silvia Maitz ◽  
Francesca Crosti ◽  
Elena Sala ◽  
Nicoletta Villa ◽  
...  

Chromosome 16 is one of the most gene-rich chromosomes of our genome, and 10% of its sequence consists of segmental duplications, which give instability and predisposition to rearrangement by the recurrent mechanism of non-allelic homologous recombination. Microarray technologies have allowed for the analysis of copy number variations (CNVs) that can contribute to the risk of developing complex diseases. By array comparative genomic hybridization (CGH) screening of 1476 patients, we detected 27 cases with CNVs on chromosome 16. We identified four smallest regions of overlapping (SROs): one at 16p13.11 was found in seven patients; one at 16p12.2 was found in four patients; two close SROs at 16p11.2 were found in twelve patients; finally, six patients were found with atypical rearrangements. Although phenotypic variability was observed, we identified a male bias for Childhood Apraxia of Speech associated to 16p11.2 microdeletions. We also reported an elevated frequency of second-site genomic alterations, supporting the model of the second hit to explain the clinical variability associated with CNV syndromes. Our goal was to contribute to the building of a chromosome 16 disease-map based on disease susceptibility regions. The role of the CNVs of chromosome 16 was increasingly made clear in the determination of developmental delay. We also found that in some cases a second-site CNV could explain the phenotypic heterogeneity by a simple additive effect or a pejorative synergistic effect.


F1000Research ◽  
2018 ◽  
Vol 7 ◽  
pp. 1033
Author(s):  
Isha Pandey ◽  
Ramandeep Kaur ◽  
Amit Kumar Subudhi ◽  
P.A Boopathi ◽  
Raja C. Mugasimangalam ◽  
...  

Background: There are several techniques to analyse copy number variation in both research and clinical settings, such as whole genome amplification (sWGA), SNP arrays and one of the most commonly used techniques, array based comparative genomic hybridization (aCGH). In the latter, copy number comparison is obtained between differentially labelled target and reference DNAs by measuring ratio of fluorescence intensity of probes indicating loss or gain in the chromosomal region. Methods: Here we carry out a comparative analysis between two Plasmodium falciparum parasite isolates (Pf-isolate-2 and Pf-isolate-1) causing malaria using array CGH. The array contains approximately 418,577, 60mer custom-designed probes with an average probe spacing of 56 bp. The significant major variations (amplifications and deletions) copy number variations (CNV) in Pf-isolate-2 (Pf-2) in comparison with Pf-isolate-1 (Pf-1), are reported. Results: CNVs have been seen in all the chromosomes in Pf-2, most of the deletions have been seen mostly in sub-telomeric and telomeric regions of the chromosomes that comprises of variant surface antigen family genes. Apart from the subtelomeric regions other parts of the chromosomes have also shown CNVs. Novel variations ,  like continuous amplification of 28kb region (249817-278491) of chromosome-8, which covers for 3 genes two of which codes for conserved Plasmodium proteins with unknown function (MAL8P1.139, PF08_0122) and tRNA pseudouridine synthase, putative (PF08_0123). Amplifications in regions harboring genes like GTP cyclohydrolase I (GCH-1, PFL1155W) and ribosomal protein, L24, putative (PFL1150C) of chromosome 12 were seen. Conclusion: Other than known variations reported earlier, some novel variations have also been seen in the chromosomes of Pf-2. This is an experimental case study reporting major amplifications and deletions in Pf-isolate-2 in comparison with Pf-isolate-1 using a tiling array based comparative genomic hybridization approach.


2020 ◽  
Vol 160 (11-12) ◽  
pp. 634-642
Author(s):  
Shiqiang Luo ◽  
Xingyuan Chen ◽  
Tizhen Yan ◽  
Jiaolian Ya ◽  
Zehui Xu ◽  
...  

High-throughput sequencing based on copy number variation (CNV-seq) is commonly used to detect chromosomal abnormalities. This study identifies chromosomal abnormalities in aborted embryos/fetuses in early and middle pregnancy and explores the application value of CNV-seq in determining the causes of pregnancy termination. High-throughput sequencing was used to detect chromosome copy number variations (CNVs) in 116 aborted embryos in early and middle pregnancy. The detection data were compared with the Database of Genomic Variants (DGV), the Database of Chromosomal Imbalance and Phenotype in Humans using Ensemble Resources (DECIPHER), and the Online Mendelian Inheritance in Man (OMIM) database to determine the CNV type and the clinical significance. High-throughput sequencing results were successfully obtained in 109 out of 116 specimens, with a detection success rate of 93.97%. In brief, there were 64 cases with abnormal chromosome numbers and 23 cases with CNVs, in which 10 were pathogenic mutations and 13 were variants of uncertain significance. An abnormal chromosome number is the most important reason for embryo termination in early and middle pregnancy, followed by pathogenic chromosome CNVs. CNV-seq can quickly and accurately detect chromosome abnormalities and identify microdeletion and microduplication CNVs that cannot be detected by conventional chromosome analysis, which is convenient and efficient for genetic etiology diagnosis in miscarriage.


Author(s):  
Wenhui Li ◽  
Wanjun Lei ◽  
Xiaopei Chao ◽  
Xiaochen Song ◽  
Yalan Bi ◽  
...  

AbstractThe association between human papillomavirus (HPV) integration and relevant genomic changes in uterine cervical adenocarcinoma is poorly understood. This study is to depict the genomic mutational landscape in a cohort of 20 patients. HPV+ and HPV− groups were defined as patients with and without HPV integration in the host genome. The genetic changes between these two groups were described and compared by whole-genome sequencing (WGS) and whole-exome sequencing (WES). WGS identified 2916 copy number variations and 743 structural variations. WES identified 6113 somatic mutations, with a mutational burden of 2.4 mutations/Mb. Six genes were predicted as driver genes: PIK3CA, KRAS, TRAPPC12, NDN, GOLGA6L4 and BAIAP3. PIK3CA, NDN, GOLGA6L4, and BAIAP3 were recognized as significantly mutated genes (SMGs). HPV was detected in 95% (19/20) of patients with cervical adenocarcinoma, 7 of whom (36.8%) had HPV integration (HPV+ group). In total, 1036 genes with somatic mutations were confirmed in the HPV+ group, while 289 genes with somatic mutations were confirmed in the group without HPV integration (HPV− group); only 2.1% were shared between the two groups. In the HPV+ group, GOLGA6L4 and BAIAP3 were confirmed as SMGs, while PIK3CA, NDN, KRAS, FUT1, and GOLGA6L64 were identified in the HPV− group. ZDHHC3, PKD1P1, and TGIF2 showed copy number amplifications after HPV integration. In addition, the HPV+ group had significantly more neoantigens. HPV integration rather than HPV infection results in different genomic changes in cervical adenocarcinoma.


2021 ◽  
pp. jclinpath-2020-207346
Author(s):  
Inês Tavares ◽  
Ricardo Martins ◽  
Ilda Patrícia Ribeiro ◽  
Luísa Esteves ◽  
Francisco Caramelo ◽  
...  

AimsCholangiocarcinoma (CC) is a rare tumour arising from the biliary tract epithelium. The aim of this study was to perform a genomic characterisation of CC tumours and to implement a model to differentiate extrahepatic (ECC) and intrahepatic (ICC) cholangiocarcinoma.MethodsDNA extracted from tumour samples of 23 patients with CC, namely 10 patients with ECC and 13 patients with ICC, was analysed by array comparative genomic hybridisation. A support vector machine algorithm for classification was applied to the genomic data to distinguish between ICC and ECC. A survival analysis comparing both groups of patients was also performed.ResultsWith these whole genome results, we observed several common alterations between tumour samples of the same CC anatomical type, namely gain of Xp and loss of 3p, 11q11, 14q, 16q, Yp and Yq in ICC tumours, and gain of 16p25.3 and loss of 3q26.1, 6p25.3–22.3, 12p13.31, 17p, 18q and Yp in ECC tumours. Gain of 2q37.3 was observed in the samples of both tumour subtypes, ICC and ECC. The developed genomic model comprised four chromosomal regions that seem to enable the distinction between ICC and ECC, with an accuracy of 71.43% (95% CI 43% to 100%). Survival analysis revealed that in our cohort, patients with ECC survived on average 8 months less than patients with ICC.ConclusionsThis genomic characterisation and the introduction of genomic models to clinical practice could be important for patient management and for the development of targeted therapies. The power of this genomic model should be evaluated in other CC populations.


Sign in / Sign up

Export Citation Format

Share Document