The heterogeneity of response of PC12 cell lines from different laboratories to NGF and PACAP questions the reproducibility of studies carried out with tumor cell lines

2021 ◽  
Author(s):  
Colombe Delage ◽  
Lou Breard-Mellin ◽  
Caroline Theresine ◽  
Sephora Simioneck ◽  
Benjamin Lefranc ◽  
...  
1983 ◽  
Vol 50 (03) ◽  
pp. 726-730 ◽  
Author(s):  
Hamid Al-Mondhiry ◽  
Virginia McGarvey ◽  
Kim Leitzel

SummaryThis paper reports studies on the interaction between human platelets, the plasma coagulation system, and two human tumor cell lines grown in tissue culture: Melanoma and breast adenocarcinoma. The interaction was monitored through the use of 125I- labelled fibrinogen, which measures both thrombin activity generated by cell-plasma interaction and fibrin/fibrinogen binding to platelets and tumor cells. Each tumor cell line activates both the platelets and the coagulation system simultaneously resulting in the generation of thrombin or thrombin-like activity. The melanoma cells activate the coagulation system through “the extrinsic pathway” with a tissue factor-like effect on factor VII, but the breast tumor seems to activate factor X directly. Both tumor cell lines activate platelets to “make available” a platelet- derived procoagulant material necessary for the conversion of prothrombin to thrombin. The tumor-derived procoagulant activity and the platelet aggregating potential of cells do not seem to be inter-related, and they are not specific to malignant cells.


1989 ◽  
Vol 1 (6) ◽  
pp. 359-365 ◽  
Author(s):  
Richard D. H. Whelan ◽  
Louise K. Hosking ◽  
Alan J. Townsend ◽  
Kenneth H. Cowan ◽  
Bridget T. Hill

2006 ◽  
Vol 11 (3) ◽  
pp. 177-183 ◽  
Author(s):  
Kil-Nam Kim ◽  
Ki-Wan Lee ◽  
Choon-Bok Song ◽  
Chang-Bum Ahn ◽  
You-Jin Jeon

2020 ◽  
Vol 17 (4) ◽  
pp. 512-517
Author(s):  
Ognyan Ivanov Petrov ◽  
Yordanka Borisova Ivanova ◽  
Mariana Stefanova Gerova ◽  
Georgi Tsvetanov Momekov

Background: Chemotherapy is one of the mainstays of cancer treatment, despite the serious side effects of the clinically available anticancer drugs. In recent years increasing attention has been directed towards novel agents with improved efficacy and selectivity. Compounds with chalcone backbone have been reported to possess various biological activities such as anticancer, antimicrobial, anti-inflammatory, analgesic, antioxidant, etc. It was reported that aminomethylation of hydroxy chalcones to the corresponding Mannich bases increased their cytotoxicity. In this context, our interest has been focused on the design and synthesis of the so-called multi-target molecules, containing two or more pharmacophore fragments. Methods: A series of Mannich bases were synthesized by the reaction between 6-[3-(3,4,5- trimethoxyphenyl)-2-propenoyl]-2(3Н)-benzoxazolone, formaldehyde, and a secondary amine. The structures of the compounds were confirmed by elemental analysis, IR and NMR spectra. The new Mannich bases were evaluated for their in vitro cytotoxicity against a panel of human tumor cell lines, including BV-173, SKW-3, K-562, HL-60, HD-MY-Z and MDA-MB-231. The effects of selected compounds on the cellular levels of glutathione (GSH) were determined. Results: The new compounds 4a-e exhibited concentration-dependent cytotoxic effects at micromolar concentrations in MTT-dye reduction assay against a panel of human tumor cell lines, similar to those of starting chalcone 3. The tested agents led to concentration - dependent depletion of cellular GSH levels, whereby the effects of the chalcone prototype 3 and its Mannich base-derivatives were comparable. Conclusion: The highest chemosensitivity to the tested compounds was observed in BV- 173followed by SKW-3 and HL-60 cell lines.


2019 ◽  
Vol 19 (12) ◽  
pp. 1438-1453 ◽  
Author(s):  
Rafat M. Mohareb ◽  
Amr S. Abouzied ◽  
Nermeen S. Abbas

Background: Dimedone and thiazole moieties are privileged scaffolds (acting as primary pharmacophores) in many compounds that are useful to treat several diseases, mainly tropical infectious diseases. Thiazole derivatives are a very important class of compounds due to their wide range of pharmaceutical and therapeutic activities. On the other hand, dimedone is used to synthesize many therapeutically active compounds. Therefore, the combination of both moieties through a single molecule to produce heterocyclic compounds will produce excellent anticancer agents. Objective: The present work reports the synthesis of 47 new substances belonging to two classes of compounds: Dimedone and thiazoles, with the purpose of developing new drugs that present high specificity for tumor cells and low toxicity to the organism. To achieve this goal, our strategy was to synthesize a series of 4,5,6,7-tetrahydrobenzo[d]-thiazol-2-yl derivatives using the reaction of the 2-bromodimedone with cyanothioacetamide. Methods: The reaction of 2-bromodimedone with cyanothioacetamide gave the 4,5,6,7-tetrahydrobenzo[d]- thiazol-2-yl derivative 4. The reactivity of compound 4 towards some chemical reagents was observed to produce different heterocyclic derivatives. Results: A cytotoxic screening was performed to evaluate the performance of the new derivatives in six tumor cell lines. Thirteen compounds were shown to be promising toward the tumor cell lines which were further evaluated toward five tyrosine kinases. Conclusion: The results of antitumor screening showed that many of the tested compounds were of high inhibition towards the tested cell lines. Compounds 6c, 8c, 11b, 11d, 13b, 14b, 15c, 15g, 21b, 21c, 20d and 21d were the most potent compounds toward c-Met kinase and PC-3 cell line. The most promising compounds 6c, 8c, 11b, 11d, 13b, 14b, 15c, 15g, 20c, 20d, 21b, 21c and 21d were further investigated against tyrosine kinase (c-Kit, Flt-3, VEGFR-2, EGFR, and PDGFR). Compounds 6c, 11b, 11d, 14b, 15c, and 20d were selected to examine their Pim-1 kinase inhibition activity the results revealed that compounds 11b, 11d and 15c had high activities.


Author(s):  
Margarita E. Neganova ◽  
Sergey G. Klochkov ◽  
Yulia R. Aleksandrova ◽  
Vladimir N. Osipov ◽  
Dmitry V. Avdeev ◽  
...  

Aims: The main goal of this work where is to synthesize new original spirocyclic hydroxamic acids, investigate their cytotoxicity against to the panel of tumor cell lines and possible mechanism of action of these active compounds. Background: Hydroxamic acids are one of the promising classes of chemical compounds with proven has anticancer potential properties. This is manifested in the presence of metal chelating and antioxidant activities, the ability to inhibit histone deacetylase enzymes and a chemosensitizing effect against well known cytostatics. Objective: Original spirocyclic hydroxamic acids were synthesized and spectrums of their antiproliferative activities were investigated. Methods: The cytotoxic activities on different tumor lines (SH-SY5Y, HeLa and healthy cells HEK-293) were investigated and determined possible underlying mechanisms of their activity. Result: New original spirocyclic hydroxamic acids were synthesized. These compounds exhibit antiproliferative properties against of the various tumor cultures cells and also exhibits antioxidant activity, a depolarizing effect on the mitochondrial membrane, inhibit the activity of the histone deacetylase enzyme, and also decrease of basal glycolysis and glycolytic capacity reserve of HeLa and SH-SY5Y tumor cell lines. Conclusion: The most promising are compounds 5j-l containing two chlorine atoms as substituents in the quinazoline part of the molecule and hydroxamate function. Therefore, these compounds can be considered as hit compounds for the development on their basis multi-target anticancer agents.


Sign in / Sign up

Export Citation Format

Share Document