scholarly journals Video streaming over Ad hoc on-demand distance vector routing protocol

2019 ◽  
Vol 8 (3) ◽  
pp. 863-874
Author(s):  
Othman O. Khalifa ◽  
Diaa Eldin Mustafa Ahmed ◽  
Aisha Hassan Abdalla Hashim ◽  
Mudathir Yagoub

Video streaming is content sent in compressed form over the netwoks and viwed the users progressively. The transmission of video with the end goal that it can be prepared as consistent and nonstop stream. The point is that to give client support to client at anyplace and at whatever time. Mobile Ad hoc Networks (MANETs) are considered an attractive nertwork for information transmission in many applications where the customer programme can begin showing the information before the whole record has been transmitted. Ad hoc On-demand Distance Vector (AODV) protocol is considered as one of the most important routing protocols in MANET. However, routing protocols assume a crucial part in transmission of information over the network. This paper investigates the performance of AODV Routing Protocol under video traffic over PHY IEEE 802.11g. The protocol model was developed in OPNET. Different outcomes from simulation based models are analyzed and appropriate reasons are also discussed. A different scenarios of video streaming were used. The metric in terms of throughput, end to end delay, packet delivery ratio and routing overhead were measured. A comparision with GRP and GRP are also reported.

Mobile ad hoc networks (MANETs) are collection of nodes connected through wireless medium and do not require infrastructure for operation. Network Topology keeps on changing because mobility of nodes are high. Therefore, it is important for MANETs to provide excellent routing and security features. Since MANETs do not require any pre-existing infrastructure, they are extensively used in emergency and rescue and military applications. MANETs thus will form essentially an important part in wireless networks. In this paper, Ad hoc On-Demand Distance Vector (AODV) and Greedy Perimeter Stateless Routing (GPSR) routing protocol performance is compared with respect to Throughput and E2ED and observed that there is an improvement in throughput by 11% in case of GPSR. Simulation is performed using NS3.


2019 ◽  
Vol 3 (2) ◽  
pp. 64-69
Author(s):  
Mohamad T. Sultan ◽  
Khaled N. Yasen ◽  
Ali Q. Saeed

Mobile ad hoc network (MANET) is an infrastructure-less and decentralized network without any physical connections. Nodes are mobile, free to move, and independent of each other which makes routing a difficult task. Hence, a dynamic routing protocol is needed to make MANET reliable and function properly. Several routing protocols have been proposed with different working mechanisms and performance levels. Therefore, the performance study of those protocols is needed. This paper evaluates the performance of MANET routing protocols using simulation based experiments to observe the behavior of the network as the density of the nodes increases. The paper evaluates the performance of proactive (fisheye state routing), reactive (ad hoc on-demand distance vector), and hybrid (zone routing protocol) routing protocols in terms of the packet delivery fraction, average throughput, and average end-to-end delay. The simulations of protocols to analyze their performance in different conditions were performed using the network simulator 2 (NS 2).


Author(s):  
Rahul M Desai ◽  
B P Patil ◽  
Davinder Pal Sharma

<p class="Default">Ad hoc networks are mobile wireless networks where each node is acting as a router. The existing routing protocols such as Destination sequences distance vector, Optimized list state routing protocols, Ad hoc on demand routing protocol, Ad hoc on demand multipath routing protocol, Dynamic source routing are optimized versions of distance vector or link state routing protocols.  In this paper, existing protocols such as DSDV, AODV, AOMDV, OLSR and DSR are analyzed on 50 nodes Mobile Ad Hoc network with random mobility. Packet delivery ratio, delay, control overhead and throughput parameters are used for performance analysis.</p>


2017 ◽  
Vol 16 (1) ◽  
pp. 7535-7547 ◽  
Author(s):  
Sherin Hijazi ◽  
Mahmoud Moshref ◽  
Saleh Al-Sharaeh

Mobile Ad-hoc Network (MANET) is a kind of wireless network that has the most challenging network infrastructure. It is formed using the mobile nodes without any centralized administration from the security perspective and is a self-configuring fastest emerging wireless technology, each node on the MANET will act like a router which forwards the packets. Dynamic nature of this network makes routing protocols to play a prominent role in setting up efficient route among a pair of nodes. Dynamic Source Routing (DSR) and Ad-hoc On-Demand Distance Vector (ADOV) is a reactive MANET routing protocols. Most of the attacks on MANETs are routing protocol attacks. Attacks on routing protocols, especially internal attacks will cause the damage to MANETs. Sinkhole and black hole attacks are a type of internal attack which is affected by attempting to draw all network traffic to malicious nodes that fake routing update and degrade the performance of the network. The black hole nodes should be detected from the network as early as possible via detection mechanism and should also guarantee the higher detection rate and less cross-over error rate. In this paper, we studied the characteristics of black hole attack and how it will affect the performance of the distance vector routing on demand routing protocol such as (ADOV) protocol, which recognizes the presence of black hole node from packet flow information between nodes and isolates it from the network via applying AODV protocol that one of popular routing protocol. We have evaluated the performance of the system using widely used simulator NS2, results prove the effectiveness of our prevention and detection method.


2021 ◽  
Vol 2021 ◽  
pp. 1-32
Author(s):  
Kiran Afzal ◽  
Rehan Tariq ◽  
Farhan Aadil ◽  
Zeshan Iqbal ◽  
Nouman Ali ◽  
...  

IoV is the latest application of VANET and is the alliance of Internet and IoT. With the rapid progress in technology, people are searching for a traffic environment where they would have maximum collaboration with their surroundings which comprise other vehicles. It has become a necessity to find such a traffic environment where we have less traffic congestion, minimum chances of a vehicular collision, minimum communication delay, fewer communication errors, and a greater message delivery ratio. For this purpose, a vehicular ad hoc network (VANET) was devised where vehicles were communicating with each other in an infrastructureless environment. In VANET, vehicles communicate in an ad hoc manner and communicate with each other to deliver messages, for infotainment purposes or for warning other vehicles about emergency scenarios. Unmanned aerial vehicle- (UAV-) assisted VANET is one of the emerging fields nowadays. For VANET’s routing efficiency, several routing protocols are being used like optimized link state routing (OLSR) protocol, ad hoc on-demand distance vector (AODV) routing protocol, and destination-sequenced distance vector (DSDV) protocol. To meet the need of the upcoming era of artificial intelligence, researchers are working to improve the route optimization problems in VANETs by employing UAVs. The proposed system is based on a model of VANET involving interaction with aerial nodes (UAVs) for efficient data delivery and better performance. Comparisons of traditional routing protocols with UAV-based protocols have been made in the scenario of vehicle-to-vehicle (V2V) communication. Later on, communication of vehicles via aerial nodes has been studied for the same purpose. The results have been generated through various simulations. After performing extensive simulations by varying different parameters over grid sizes of 300 × 1500 m to 300 × 6000 m, it is evident that although the traditional DSDV routing protocol performs 14% better than drone-assisted destination-sequenced distance vector (DA-DSDV) when we have number of sinks equal to 25, the performance of drone-assisted optimized link state routing (DA-OLSR) protocol is 0.5% better than that of traditional OLSR, whereas drone-assisted ad hoc on-demand distance vector (DA-AODV) performs 22% better than traditional AODV. Moreover, if we increase the number of sinks up to 50, it can be clearly seen that the DA-AODV outperforms the rest of the routing protocols by up to 60% (either traditional routing protocol or drone-assisted routing protocol). In addition, for parameters like MAC/PHY overhead and packet delivery ratio, the performance of our proposed drone-assisted variants of protocols is also better than that of the traditional routing protocols. These results show that our proposed strategy performs better than the traditional VANET protocols and plays important role in minimizing the MAC/PHY and enhancing the average throughput along with average packet delivery ratio.


Author(s):  
M. Chekhar ◽  
K. Zine-Dine ◽  
M. Bakhouya ◽  
A. Aaroud ◽  
J. Gaber

Information broadcasting in wireless network is a necessary building block for cooperative operations. However, the broadcasting causes increases the routing overhead. This paper brings together an array of tools of our adaptive protocol for information broadcasting in MANETs. The proposed protocol in this paper named WAODV (WAIT-AODV). This new adaptive routing discovery protocol for MANETs, lets in nodes to pick out a fantastic motion: both to retransmit receiving request route request (RREQ) messages, to discard, or to wait earlier than making any decision, which dynamically confgures the routing discovery feature to decide a gorgeous motion through the usage of neighbors’ knowledge. Simulations have been conducted to show the effectiveness of the using of techniques adaptive protocol for information broadcasting RREQ packet when integrated into ad hoc on-demand distance vector (AODV) routing protocols for MANET (which is based on simple flooding).


Author(s):  
V.J. Chakravarthy

<p>The most challenging concern in MANET is video streaming and it essentially exaggerated by these important factors such as fading, node mobility, interference, topology on change in dynamic, collusion, shadowing in multi-path etc. One of the very attractive and considered for many applications is Mobile Ad Hoc Networks (MANET).Routing Protocol is most significant element which is considered as the MANET. Though, the quite demanding task is video streaming over MANET. This paper have been investigated the analysis of routing protocols over MANET for video streaming. The comparison of the three routing protocols are Secure Dynamic Source Routing (SDSR), Secure Ad hoc On-demand Distance Vector (SAODV) and secured Right angled and Ant search routing Protocol (SRAAA) on the basis of various performance metrics such as Throughput, Packet Delivery Ratio (PDR), Delay, Packet Delivery Fraction (PDF), Energy Consumption, Link Failure and Packet Drop has been obtainable in this paper for supporting video streaming applications. Based on the compared stimulated results concluded that SRAAA routing protocol is comparatively better in performance of all metrics than the SAODV and SDSR routing protocols.</p>


Electronics ◽  
2020 ◽  
Vol 9 (9) ◽  
pp. 1499
Author(s):  
Sayed Jobaer ◽  
Yihong Zhang ◽  
Muhammad Ather Iqbal Hussain ◽  
Foysal Ahmed

Traffic congestion control is becoming a popular field of research due to the rapid development of the automotive market. Vehicular ad hoc networks (VANETs) have become the core research technology for numerous application possibilities related to road safety. Road congestions have been a serious issue of all time since the nodes have high mobility and transmission range is limited, resulting in an interruption of communication. One of the significant technical challenges faced in implementing VANET is the design of the routing protocol, providing adequate information and a reliable source for the destination. We proposed a novel mechanism unmanned aerial vehicle (UAV)-assisted ad hoc on-demand distance vector (AODV) routing protocol (UAVa) for current-time traffic information accumulation and sharing to the entire traffic network and to control congestions before it happens. The UAV-assisted (UAVa) protocol is dedicated to urban environments, and its primary goal is to enhance the performance of routing protocols based on intersections. We compared the overall performance of existing routing protocols, namely ad hoc on-demand distance vector. The simulations were done by using OpenStreetMap (OSM), Network Simulator (NS-2.35), Simulation of Urban Mobility (SUMO), and VanetMobiSim. Furthermore, we compared the simulation results with AODV, and it shows that UAV-assisted (UAVa) AODV has significantly enhanced the packet delivery ratio, reduced the end-to-end delay, improved the average and instant throughput, and saved more energy. The results show that the UAVa is more robust and effective and we can conclude that UAVa is more suitable for VANETs.


2011 ◽  
Vol 204-210 ◽  
pp. 395-399 ◽  
Author(s):  
Li Cui Zhang ◽  
Zhi Gang Wang ◽  
Tao Wang ◽  
Yong Shi Sun ◽  
Xiao Fei Xu

DATA flooding attack is a serious menace for the security of on-demand routing protocol in Ad Hoc networks. In the paper, on the basis of three typical on-demand routing protocols AODV, DSR and TORA, we present a special security scheme against data flooding attack. Then we simulate the scheme on NS2 platform and compare two performance parameters before and after using the scheme: average delay and packet delivery rate. The results indicate that this project is comparatively effective to resist the DATA flooding attack.


Sign in / Sign up

Export Citation Format

Share Document