scholarly journals The design of IPT system for multiple kitchen appliances using class E LCCL circuit

Author(s):  
N. X. Yin ◽  
Shakir Saat ◽  
S. H. Husin ◽  
Y. Yusop ◽  
M. R. Awal

Since many years ago, kitchen appliances are powered up by cable connected. This create a troublesome case as wire might tangle together and cause kitchen table messy. Due to this, wireless power technology (WPT) is introduced as its ability is to transmit power to load without physical contact. This leads to cordless solution better in safety as the product can be completely seal, highly expandable power range. This work focuses on the design of WPT based on inductive approach to power up multiple kitchen appliances. The selection of inductive approach over its partners capacitive and acoustic is mainly due to high power efficiency. Class E inverter is proposed here to convert the DC to AC current to drive the inductive link. A 1 MHz operating frequency is used. To ensure the circuit is robust with load variations, an LCCL impedance matching is proposed. This solution is table to maintain the output power if there is a slight change in load impedance. Finally, the developed prototype is able to supply 50V utput which can achieve power transmission up to 81.76%.

2020 ◽  
Vol 7 (1) ◽  
pp. 33-41
Author(s):  
Abdelmajid Sarraj ◽  
Wael Dghais ◽  
S. Barmada ◽  
M. Tucci ◽  
M. Raugi

AbstractThis paper presents design considerations for an integrated wireless power transfer (WPT) and power line communication (PLC) system (e.g. WPT-PLC). The main goal is to enable wireless charging of mobile electronic products, along with high data rate communication over the shared wireless inductive resonant channel. Starting from a couple of resonant coils, characterized by the S-parameters matrix, the design of an impedance matching network and decoupling filters is carried out to better decouple power and data signals. A pulse-driven class-E power amplifier (PA) and a rectifier are first conceived based on the measured S-parameters and load-pull characterizations. Second, a sine-driven class-E power link, operating at 6.78 MHz, is proposed to reduce the total harmonic distortion of the integrated WPT-PLC system. These design steps aim to ensure high-power efficiency and low harmonic distortion of the class-E PA in order to mildly affect the channel capacity of the PLC. The harmonic interferences of the pulse-driven and sine-driven class-E power links are compared and discussed, together with the electromagnetic compatibility levels, the channel capacity, and the noise disturbances of the PLC channel in order to guarantee an optimized power and data transfer in the integrated WPT-PLC system.


Energies ◽  
2021 ◽  
Vol 14 (14) ◽  
pp. 4289
Author(s):  
Yi Zhang ◽  
Yue Feng ◽  
Sheng Liu ◽  
Jiande Wu ◽  
Xiangning He

The performance of a conventional Class-E2-based WPT system is sensitive to system parameters such as the coil coupling coefficient and load variation. System efficiency decreases rapidly when the coil coupling coefficient and load deviate from their optimum values. In this paper, an impedance matching method and a design procedure are proposed to maintain high system efficiency over a wider range of coupling coefficient and load variations. The load-pull technique is adopted to identify the high-efficiency load region of a Class-E power amplifier (PA), and a double-L-type impedance matching network (IMN) is proposed to transform the load impedance of a Class-E PA into a high-efficiency working region. Compared to a single L-type IMN, a double-L-type IMN is more flexible and has better tuning performance. A 6.78MHz Class-E2-based WPT system was built to validate the proposed design method. The experimental results show that the proposed double-L-type IMN can significantly attenuate the decline in Class-E PA efficiency when system parameters dynamically change. With a double-L-type IMN, the WPT system could maintain high efficiency (over 55%) under a wider range of coil coupling coefficient and load variations. The peak system efficiency reached 83.2% with 13.7 W output power. The impedance matching method and design procedure in this paper could provide a practical solution for building a high-efficiency WPT system with strong robustness.


Proceedings ◽  
2021 ◽  
Vol 68 (1) ◽  
pp. 13
Author(s):  
Yixuan Sun ◽  
Stephen Beeby

This paper presents the COMSOL simulations of magnetically coupled resonant wireless power transfer (WPT), using simplified coil models for embroidered planar two-coil and four-coil systems. The power transmission of both systems is studied and compared by varying the separation, rotation angle and misalignment distance at resonance (5 MHz). The frequency splitting occurs at short separations from both the two-coil and four-coil systems, resulting in lower power transmission. Therefore, the systems are driven from 4 MHz to 6 MHz to analyze the impact of frequency splitting at close separations. The results show that both systems had a peak efficiency over 90% after tuning to the proper frequency to overcome the frequency splitting phenomenon at close separations below 10 cm. The four-coil design achieved higher power efficiency at separations over 10 cm. The power efficiency of both systems decreased linearly when the axial misalignment was over 4 cm or the misalignment angle between receiver and transmitter was over 45 degrees.


Electronics ◽  
2019 ◽  
Vol 8 (9) ◽  
pp. 1029 ◽  
Author(s):  
Guidong Zhang ◽  
Zuhong Ou ◽  
Lili Qu

A wireless power transmission (WPT) requires high switching frequency to achieve energy transmission; however, existing switching devices cannot satisfy the requirements of high-frequency switching, and the efficiency of current WPT is too low. Compared with the traditional power inductors and capacitors, fractional-order elements (FOEs) in WPT can realize necessary functions though requiring a lower switching frequency, which leads to a more favorable high-frequency switching performance with a higher efficiency. In this study, a generalized fractional-order WPT (FO-WPT) is established, followed by a comprehensive analysis on its WPT performance and power efficiency. Through extensive simulations of typical FO wireless power domino-resonators (FO-WPDRS), the functionality of the proposed FO-WPT for medium and long-range WPT is demonstrated. The numerical results show that the proposed FOE-based WPT solution has a higher power efficiency and lower switching frequency than conventional methods.


2018 ◽  
Vol 5 (2) ◽  
pp. 87-96 ◽  
Author(s):  
Yi Zhao ◽  
Huaye Li ◽  
Saman Naderiparizi ◽  
Aaron Parks ◽  
Joshua R. Smith

Near-field communication (NFC) readers, ubiquitously embedded in smartphones and other infrastructures can wirelessly deliver mW-level power to NFC tags. Our previous work NFC-wireless identification and sensing platform (WISP) proves that the generated NFC signal from an NFC enabled phone can power a tag (NFC-WISP) with display and sensing capabilities in addition to identification. However, accurately aligning and placing the NFC tag's antenna to ensure the high power delivery efficiency and communication performance is very challenging for the users. In addition, the performance of the NFC tag is not only range and alignment sensitive but also is a function of its run-time load impedance. This makes the execution of power-hungry tasks on an NFC tag (like the NFC-WISP) very challenging. Therefore, we explore a low-cost tag antenna design to achieve higher power delivered to the load (PDL) by utilizing two different antenna configurations (2-coil/3-coil). The two types of antenna configurations can be used to dynamically adapt to the requirements of varied range, alignment and load impedance in real-time, therefore, we achieve continuous high PDL and reliable communication. With the proposed method, we can, for example, turn a semi-passive NFC-WISP into a passive display tag in which an embedded 2.7″ E-ink screen can be updated robustly by a tapped NFC reader (e.g. an NFC-enable cell-phone) over a 3 seconds and within 1.5cm range.


Sign in / Sign up

Export Citation Format

Share Document