scholarly journals An efficient data masking for securing medical data using DNA encoding and chaotic system

Author(s):  
Siddartha B. K. ◽  
Ravikumar G. K.

Data security is utmost important for ubiquitous computing of medical/diagnostic data or images. Along with must consider preserving privacy of patients. Recently, deoxyribose nucleic acid (DNA) sequences and chaotic sequence are jointly used for building efficient data masking model. However, the state-of-art model are not robust against noise and cropping attack (CA). Since in existing model most digits of each pixel are not altered. This work present efficient data masking (EDM) method using chaos and DNA based encryption method for securing health care data. For overcoming research challenges effective bit scrambling method is required. Firstly, this work present an efficient bit scrambling using logistic sine map and pseudorandom sequence using chaotic system. Then, DNA substitution is performed among them to resist against differential attack (DA), statistical attack (SA) and CA. Experiment are conducted on standard considering diverse images. The outcome achieved shows proposed model efficient when compared to existing models.

2021 ◽  
Author(s):  
Younes Qobbi ◽  
Abdeltif jarjar ◽  
Mohamed Essaid ◽  
Abdelhamid Benazzi

Abstract Based on the two-dimensional logistic map and a single improved genetic operator, a new image encryption system is proposed. The original image is transformed into DNA sequences, a subdivision into blocks of size calculated by using the chaotic map, with the intention to apply a crossover between blocks chaotically selected from a chaotic control vectors. For the installation of a diffusion phase, a strong link is established between the block resulting from a crossing operation and the next original block. Hoping to considerably increase the impact of the avalanche effect and protect the system against any differential attack. Simulations performed on a large number of images of different size and formats ensure that our method is not subject to any known attacks.


2001 ◽  
Vol 14 (2) ◽  
pp. 229-243 ◽  
Author(s):  
Emanuela Handman

SUMMARY Leishmaniae are obligatory intracellular protozoa in mononuclear phagocytes. They cause a spectrum of diseases, ranging in severity from spontaneously healing skin lesions to fatal visceral disease. Worldwide, there are 2 million new cases each year and 1/10 of the world's population is at risk of infection. To date, there are no vaccines against leishmaniasis and control measures rely on chemotherapy to alleviate disease and on vector control to reduce transmission. However, a major vaccine development program aimed initially at cutaneous leishmaniasis is under way. Studies in animal models and humans are evaluating the potential of genetically modified live attenuated vaccines, as well as a variety of recombinant antigens or the DNA encoding them. The program also focuses on new adjuvants, including cytokines, and delivery systems to target the T helper type 1 immune responses required for the elimination of this intracellular organism. The availability, in the near future, of the DNA sequences of the human and Leishmania genomes will extend the vaccine program. New vaccine candidates such as parasite virulence factors will be identified. Host susceptibility genes will be mapped to allow the vaccine to be targeted to the population most in need of protection.


2020 ◽  
Author(s):  
Shadi Zabad ◽  
Alan M Moses

AbstractWe study the evolution of quantitative molecular traits in the absence of selection. Using a simple theory based on Felsenstein’s 1981 DNA substitution model, we predict a linear restoring force on the mean of an additive phenotype. Remarkably, the mean dynamics are independent of the effect sizes and genotype and are similar to the widely-used OU model for stabilizing selection. We confirm the predictions empirically using additive molecular phenotypes calculated from ancestral reconstructions of putatively unconstrained DNA sequences in primate genomes. We show that the OU model is favoured by inference software even when applied to GC content of unconstrained sequences or simulations of DNA evolution. We predict and confirm empirically that the dynamics of the variance are more complicated than those predicted by the OU model, and show that our results for the restoring force of mutation hold even for non-additive phenotypes, such as number of transcription factor binding sites, longest encoded peptide and folding propensity of the encoded peptide. Our results have implications for efforts to infer selection based on quantitative phenotype dynamics as well as to understand long-term trends in evolution of quantitative molecular traits.


2021 ◽  
Vol 15 (4) ◽  
pp. 118-131
Author(s):  
Sadiq A. Mehdi

In this paper, a novel four-dimensional chaotic system has been created, which has characteristics such as high sensitivity to the initial conditions and parameters. It also has two a positive Lyapunov exponents. This means the system is hyper chaotic. In addition, a new algorithm was suggested based on which they constructed an image cryptosystem. In the permutation stage, the pixel positions are scrambled via a chaotic sequence sorting. In the substitution stage, pixel values are mixed with a pseudorandom sequence generated from the 4D chaotic system using XOR operation. A simulation has been conducted to evaluate the algorithm, using the standardized tests such as information entropy, histogram, number of pixel change rate, unified average change intensity, and key space. Experimental results and performance analyses demonstrate that the proposed encryption algorithm achieves high security and efficiency.


2019 ◽  
Vol 48 (7) ◽  
pp. 710002 ◽  
Author(s):  
郭媛 GUO Yuan ◽  
许鑫 XU Xin ◽  
敬世伟 JING Shi-wei ◽  
杜松英 DU Song-ying

2015 ◽  
Vol 27 (2) ◽  
pp. 277-295 ◽  
Author(s):  
MAXIME CROCHEMORE ◽  
COSTAS S. ILIOPOULOS ◽  
ALESSIO LANGIU ◽  
FILIPPO MIGNOSI

Given a set $\mathcal{D}$ of q documents, the Longest Common Substring (LCS) problem asks, for any integer 2 ⩽ k ⩽ q, the longest substring that appears in k documents. LCS is a well-studied problem having a wide range of applications in Bioinformatics: from microarrays to DNA sequences alignments and analysis. This problem has been solved by Hui (2000International Journal of Computer Science and Engineering15 73–76) by using a famous constant-time solution to the Lowest Common Ancestor (LCA) problem in trees coupled with the use of suffix trees.In this article, we present a simple method for solving the LCS problem by using suffix trees (STs) and classical union-find data structures. In turn, we show how this simple algorithm can be adapted in order to work with other space efficient data structures such as the enhanced suffix arrays (ESA) and the compressed suffix tree.


2018 ◽  
Vol 10 (4) ◽  
pp. 1-14 ◽  
Author(s):  
Xuncai Zhang ◽  
Zheng Zhou ◽  
Ying Niu

1993 ◽  
Vol 4 (3) ◽  
pp. 287-292 ◽  
Author(s):  
D.L. Kauffman ◽  
P.J. Keller ◽  
A. Bennick ◽  
M. Blum

Human proline-rich proteins (PRPs) constitute a complex family of salivary proteins that are encoded by a small number of genes. The primary gene product is cleaved by proteases, thereby giving rise to about 20 secreted proteins. To determine the genes for the secreted PRPs, therefore, it is necessary to obtain sequences of both the secreted proteins and the DNA encoding these proteins. We have sequenced most PRPs from one donor (D.K.) and aligned the protein sequences with available DNA sequences from unrelated individuals. Partial sequence data have now been obtained for an additional PRP from D.K. named II-1. This protein was purified from parotid saliva by gel filtration and ion-exchange chromatography. Peptides were obtained by cleavage with trypsin, clostripain, and N-bromosuccinimide, followed by column chromatography. The peptides were sequenced on a gas-phase protein sequenator. Overlapping peptide sequences were obtained for most of II-1 and aligned with translated DNA sequences. The best fit was obtained with clones containing sequences for the allele PRB4" (Lyons et al., 1988). However, there was not complete identity of the protein amino acid sequence and the DNA-derived sequences, indicating that II-1 is not encoded by PRB4". Other PRPs isolated from D.K. also fail to conform to any DNA structure so far reported. This shows the need to obtain amino acid sequences and corresponding DNA sequences from the same person to assign genes for the PRPs and to determine the location of the postribosomal cleavage points in the primary translation product.


Sign in / Sign up

Export Citation Format

Share Document