scholarly journals Impact of sensorless neural direct torque control in a fuel cell traction system

Author(s):  
Benhamou Aissa ◽  
Tedjini Hamza ◽  
Guettaf Yacine ◽  
Nour Mohamed

<span>Due to the reliability and relatively low cost and modest maintenance requirement of the induction machine make it one of the most widely used machines in industrial applications. The speed control is one of many problems in the traction system, researchers went to new paths instead the classical controllers as PI controller, they integrated the artificial intelligent for its yield. The classical DTC is a method of speed control by using speed sensor and PI controller, it achieves a decoupled control of the electromagnetic torque and the stator flux in the stationary frame, besides, the use of speed sensors has several drawbacks such as the fragility and the high cost, for this reason, the specialists went to propose an estimators as Kalman filter. The fuel cell is a new renewable energy, it has many applications in the traction systems as train, bus. This paper presents an improved control using DTC by integrate the neural network strategy without use speed sensor (sensorless control) to reduce overtaking and current ripple and static error in the system because the PI controller has some problems like this; and reduce the cost with use a renewable energy as fuel cell.</span>

2010 ◽  
Vol 6 (2) ◽  
pp. 131-138
Author(s):  
Turki Abdalla ◽  
Haroution Hairik ◽  
Adel Dakhil

This paper presents a method for improving the speed profile of a three phase induction motor in direct torque control (DTC) drive system using a proposed fuzzy logic based speed controller. A complete simulation of the conventional DTC and closed-loop for speed control of three phase induction motor was tested using well known Matlab/Simulink software package. The speed control of the induction motor is done by using the conventional proportional integral (PI) controller and the proposed fuzzy logic based controller. The proposed fuzzy logic controller has a nature of (PI) to determine the torque reference for the motor. The dynamic response has been clearly tested for both conventional and the proposed fuzzy logic based speed controllers. The simulation results showed a better dynamic performance of the induction motor when using the proposed fuzzy logic based speed controller compared with the conventional type with a fixed (PI) controller.


Author(s):  
Lahcen Ouboubker ◽  
Jawad Lamterkati ◽  
Mohamed Khafallah ◽  
Aziz El Afia

This paper presents simulation and experimental results of anti-windup PI controller to improve induction machine speed control based on direct torque control (DTC) strategy. Problems like rollover can arise in conventional PI controller due to saturation effect. In order to avoid such problems anti-windup PI controller is presented. This controller is simple for implementation in practice. The proposed anti-windup PI controller demonstrates better dynamic step changes response in speed in terms of overshoots. All simulation work was done using Simulink in the MATLAB software. The experimental results were obtained by practical implementation on a dSPACE 1104 board for a 1.5 KW induction machine. Simulation and experimental results have proven a good performance and verified the validity of the presented control strategy.


Direct Torque Control (DTC) of induction motor is preferred control strategy recently, due to its quick torque response, simplicity, less sensitivity against motor parameter variation. In general, PI speed controllers are widely used in industrial applications due to their simple structure. Due to the continuous variation of machine parameters, model uncertainties, nonlinear dynamics and system external disturbance, fixed gain PI controllers may becomes unable to provide the required control performance. Genetic Algorithm (GA) is used to tune the PI controller gains to ensure optimal performance. GA is more attractive for applications that involve non smooth or noisy signals. GA is used to minimize speed error and attains optimal values of the PI controller gains. The efficient and effective speed controllers can be designed by using adaptive control techniques. In which the conventional PI controller is replaced by structures based on Sliding Mode Control (SMC) strategy. SMC is known for its capability to cope with bounded disturbance as well as model imprecision which makes it ideal for the robust nonlinear control of IM drives


Author(s):  
C. Bharatiraj ◽  
JL Munda ◽  
Ishan Vaghasia ◽  
Rajesh Valiveti ◽  
P. Manasa

The DC motors an outstanding portion of apparatus in automotive and automation industrial applications requiring variable speed and load characteristics due to its ease of controllability. Creating an interface control system for multi DC motor drive operations with centralized speed control, from small-scale models to large industrial applications much demand. By using Lab VIEW (laboratory virtual instrument engineering workbench) as the motor controller, can control a DC motor for multiple purposes using single software environment. The aim of this paper is to propose the centralized speed control of DC motor using Lab VIEW. Here, the Lab VIEW is used for simulating the motor, whereas the input armature voltage of the DC motor is controlled using a virtual Knob in Lab VIEW software. The hardware part of the system (DC motor) and the software (in personal computer) are interfaced using a data acquisition card (DAQ) -Model PCI- 6024E. The voltage and Speed response is obtained using LABVIEW software. Using this software, group of motors’ speed can be controlled from different location using remote telemetry. The propose work also focuses on controlling the speed of the individual DC motor using PWM scheme (Duty cycle based Square wave generation) and DAQ. Help of the DAQ along with Lab VIEW front panel window, the DC motor speed and directions can be change easily in remote way. In order to test the proposed system the laboratory model for an 80W DC motor group (multi drive) is developed for different angular displacements and directions of the motor. The simulation model and experimental results conforms the advantages and robustness of the proposed centralized speed control.


Sign in / Sign up

Export Citation Format

Share Document