scholarly journals Real time implementation of anti-windup PI controller for speed control of induction machine based on DTC strategy

Author(s):  
Lahcen Ouboubker ◽  
Jawad Lamterkati ◽  
Mohamed Khafallah ◽  
Aziz El Afia

This paper presents simulation and experimental results of anti-windup PI controller to improve induction machine speed control based on direct torque control (DTC) strategy. Problems like rollover can arise in conventional PI controller due to saturation effect. In order to avoid such problems anti-windup PI controller is presented. This controller is simple for implementation in practice. The proposed anti-windup PI controller demonstrates better dynamic step changes response in speed in terms of overshoots. All simulation work was done using Simulink in the MATLAB software. The experimental results were obtained by practical implementation on a dSPACE 1104 board for a 1.5 KW induction machine. Simulation and experimental results have proven a good performance and verified the validity of the presented control strategy.

2014 ◽  
Vol 11 (1) ◽  
pp. 159-173 ◽  
Author(s):  
Marko Rosic ◽  
Borislav Jeftenic ◽  
Milan Bebic

This paper presents ? practical implementation of direct torque control (DTC) of an induction machine on MSK2812 DSP platform, and the analysis of possibilities for reduction of torque ripple. Basic theoretical background relating the DTC was primarily set and the obtained experimental results have been given. It is shown that the torque ripple can be reduced by adjusting the intensity of voltage vectors and by modification of hysteresis comparator, while the simplicity of the basic DTC algorithm has been maintained.


2021 ◽  
Vol 34 (02) ◽  
pp. 698-709
Author(s):  
Mehdi Ahmadi Taleshian ◽  
Mahmood Ghanbari ◽  
Seyed Mehdi Rakhtala

In this paper, a novel hybrid Direct Torque Control (DTC) strategy based on predictive control with optimization of the Proportional-Integral (PI) controller to improve overall performances of Three-Phase Induction Machine (TPIM) drives is proposed. The presented control technique has contained merits of the DTC method such as fast dynamic response, simple structure, less dependence to machine parameters and merits of vector control method such as high accuracy. Furthermore, a hybrid DTC method with optimal voltage vectors is presented.  In the proposed control system, Genetic Algorithm (GA) is employed to obtain optimal values of the PI controller parameters. Finally, simulation results under the presented control strategy showed good performances of this method in comparison with DTC and vector control techniques.


Author(s):  
Benhamou Aissa ◽  
Tedjini Hamza ◽  
Guettaf Yacine ◽  
Nour Mohamed

<span>Due to the reliability and relatively low cost and modest maintenance requirement of the induction machine make it one of the most widely used machines in industrial applications. The speed control is one of many problems in the traction system, researchers went to new paths instead the classical controllers as PI controller, they integrated the artificial intelligent for its yield. The classical DTC is a method of speed control by using speed sensor and PI controller, it achieves a decoupled control of the electromagnetic torque and the stator flux in the stationary frame, besides, the use of speed sensors has several drawbacks such as the fragility and the high cost, for this reason, the specialists went to propose an estimators as Kalman filter. The fuel cell is a new renewable energy, it has many applications in the traction systems as train, bus. This paper presents an improved control using DTC by integrate the neural network strategy without use speed sensor (sensorless control) to reduce overtaking and current ripple and static error in the system because the PI controller has some problems like this; and reduce the cost with use a renewable energy as fuel cell.</span>


2010 ◽  
Vol 6 (2) ◽  
pp. 131-138
Author(s):  
Turki Abdalla ◽  
Haroution Hairik ◽  
Adel Dakhil

This paper presents a method for improving the speed profile of a three phase induction motor in direct torque control (DTC) drive system using a proposed fuzzy logic based speed controller. A complete simulation of the conventional DTC and closed-loop for speed control of three phase induction motor was tested using well known Matlab/Simulink software package. The speed control of the induction motor is done by using the conventional proportional integral (PI) controller and the proposed fuzzy logic based controller. The proposed fuzzy logic controller has a nature of (PI) to determine the torque reference for the motor. The dynamic response has been clearly tested for both conventional and the proposed fuzzy logic based speed controllers. The simulation results showed a better dynamic performance of the induction motor when using the proposed fuzzy logic based speed controller compared with the conventional type with a fixed (PI) controller.


This paper presents an adaptive PI based two control strategies of Dynamic Hysteresis Torque Band (DHTB) for improving flux regulation at low speed and zero speed in lookup table based Direct Torque Control (DTC) of an Induction Machine (IM). This is achieved by varying the band value of torque dynamically but it is limited with flux error range. With the conventional HTB based DTC, at low and zero speed, the regulation of flux will not be good. To overcome this drawback, a small alteration in the structure is done, i.e., DTHB, thus retaining the simplicity of DTC algorithm. The performance is verified by varying the speed at low values. At low speeds of IM, the flux regulation and the speed is improved with adaptive PI controller based DHTB-II compared to DTC with DHTB-I and DHTB-II.


2017 ◽  
Vol 20 (2) ◽  
pp. 76
Author(s):  
S. Boukadida ◽  
S. Gdaim ◽  
A. Mtibaa

In this paper, a new design method of Direct Torque Control using Space Vector Modulation (DTC-SVM) of an Induction Machine (IM), which is based on Fault Tolerant Control (FTC) is proposed. Due to its complexity, the FTC implemented on a microcontroller and a Digital Signal Processor (DSP) is characterized by a calculating delay. To solve this problem, an alternative digital solution is used, based on the Field Programmable Gate Array (FPGA), which is characterized by a fast processing speed. However, as an FPGAs increase in size, there is a need for improved productivity, and this includes new design flows and tools. Xilinx System Generator (XSG) is a high-level block-based design tool that offers bit and cycle accurate simulation. This tool can automatically generate the Very High-Density Logic (VHDL) code without resorting to a tough programming, without being obliged to do approximations and more we can visualize the behavior of the machine before implementation which is very important for not damage our machine. Simulation and experimental results using Hardware In the Loop (HIL) of the FTC based DTC-SVM is compared with those of the conventional DTC. The comparison results illustrate the reduction in the torque and stator flux ripples. Our purpose is to reveal our algorithm efficiency and to show the Xilinx Virtex V FPGA performances in terms of execution time. 


Sign in / Sign up

Export Citation Format

Share Document