scholarly journals Super-linear speedup for real-time condition monitoring using image processing and drones

Author(s):  
Moath Alsafasfeh ◽  
Bradely Bazuin ◽  
Ikhlas Abdel-Qader

Real-time inspections for the large-scale solar system may take a long time to get the hazard situations for any failures that may take place in the solar panels normal operations, where prior hazards detection is important. Reducing the execution time and improving the system’s performance are the ultimate goals of multiprocessing or multicore systems. Real-time video processing and analysis from two camcorders, thermal and charge-coupling devices (CCD), mounted on a drone compose the embedded system being proposed for solar panels inspection. The inspection method needs more time for capturing and processing the frames and detecting the faulty panels. The system can determine the longitude and latitude of the defect position information in real-time. In this work, we investigate parallel processing for the image processing operations which reduces the processing time for the inspection systems. The results show a super-linear speedup for real-time condition monitoring in large-scale solar systems. Using the multiprocessing module in Python, we execute fault detection algorithms using streamed frames from both video cameras. The experimental results show a super-linear speedup for thermal and CCD video processing, the execution time is efficiently reduced with an average of 3.1 times and 6.3 times using 2 processes and 4 processes respectively.

Sensors ◽  
2019 ◽  
Vol 19 (17) ◽  
pp. 3781 ◽  
Author(s):  
Michael Short ◽  
John Twiddle

This paper is concerned with the implementation and field-testing of an edge device for real-time condition monitoring and fault detection for large-scale rotating equipment in the UK water industry. The edge device implements a local digital twin, processing information from low-cost transducers mounted on the equipment in real-time. Condition monitoring is achieved with sliding-mode observers employed as soft sensors to estimate critical internal pump parameters to help detect equipment weasr before damage occurs. The paper describes the implementation of the edge system on a prototype microcontroller-based embedded platform, which supports the Modbus protocol; IP/GSM communication gateways provide remote connectivity to the network core, allowing further detailed analytics for predictive maintenance to take place. The paper first describes validation testing of the edge device using Hardware-In-The-Loop techniques, followed by trials on large-scale pumping equipment in the field. The paper concludes that the proposed system potentially delivers a flexible and low-cost industrial digitalization platform for condition monitoring and predictive maintenance applications in the water industry.


2011 ◽  
Vol 186 ◽  
pp. 11-15
Author(s):  
Li Cao ◽  
Wen Chen ◽  
Jun Xiao

Video processing technology is regarded as a low-cost detection technology in complex environment. Because the placement layer is thin and the surface is complex that causes high detection error and high cost in laser measurement. Two problems must be solved before using it in large-scale composite structures automatic placement. One is to obtain the high-quality and stable image, and the other is to improve efficiency of image processing. In this paper, a method obtaining the high quality placement gap images was studied. It made use of the optical characteristics of composite material’s surface texture. And some parameters were determined by experiments. To reduce the calculation cost of image processing, a placement gap measurement method based on line scanning was also proposed here. The method was effective in our detection experiments on an actual workpiece.


Symmetry ◽  
2019 ◽  
Vol 11 (7) ◽  
pp. 911 ◽  
Author(s):  
Md Azher Uddin ◽  
Aftab Alam ◽  
Nguyen Anh Tu ◽  
Md Siyamul Islam ◽  
Young-Koo Lee

In recent years, the amount of intelligent CCTV cameras installed in public places for surveillance has increased enormously and as a result, a large amount of video data is produced every moment. Due to this situation, there is an increasing request for the distributed processing of large-scale video data. In an intelligent video analytics platform, a submitted unstructured video undergoes through several multidisciplinary algorithms with the aim of extracting insights and making them searchable and understandable for both human and machine. Video analytics have applications ranging from surveillance to video content management. In this context, various industrial and scholarly solutions exist. However, most of the existing solutions rely on a traditional client/server framework to perform face and object recognition while lacking the support for more complex application scenarios. Furthermore, these frameworks are rarely handled in a scalable manner using distributed computing. Besides, existing works do not provide any support for low-level distributed video processing APIs (Application Programming Interfaces). They also failed to address a complete service-oriented ecosystem to meet the growing demands of consumers, researchers and developers. In order to overcome these issues, in this paper, we propose a distributed video analytics framework for intelligent video surveillance known as SIAT. The proposed framework is able to process both the real-time video streams and batch video analytics. Each real-time stream also corresponds to batch processing data. Hence, this work correlates with the symmetry concept. Furthermore, we introduce a distributed video processing library on top of Spark. SIAT exploits state-of-the-art distributed computing technologies with the aim to ensure scalability, effectiveness and fault-tolerance. Lastly, we implant and evaluate our proposed framework with the goal to authenticate our claims.


Sign in / Sign up

Export Citation Format

Share Document