scholarly journals Design of Microwave LNA Based on Ladder Matching Networks for WiMAX Applications

Author(s):  
Abu Bakar Ibrahim ◽  
Ahmad Zamzuri Mohamad Ali

<p>Advancement in the wireless industry, internet access without borders and increasing demand for high data rate wireless digital communication moving us toward the optimal development of communication technology. Wireless communication is a technology that plays an important role in current technology transformation. Broadband communication is a method of telecommunication that are available for transmitting large amounts of data, voice and video over long distance using different frequencies. Specifically, Low Noise Amplifier which is located at the first block of receiver system, makes it one of the important element in improving signal transmition. This study was aimed to design a microwave Low Noise Amplifier for wireless application that will work at 5.8 GHz using  high-performance low noise superHEMT transistor FHX76LP manufactured by Eudyna Technologies. The low noise amplifier (LNA) produced gain of 16.8 dB and noise figure (NF) of 1.20 dB. The input reflection (S<sub>11</sub>) and output return loss (S<sub>22</sub>) are -10.5 dB and -13.3 dB respectively. The bandwidth of the amplifier recorded is 1.2 GHz. The input sensitivity is compliant with the IEEE 802.16 standards.</p>

Author(s):  
Abu Bakar Ibrahim ◽  
Ahmad Zamzuri Mohamad Ali

<p>Advancement in the wireless industry, internet access without borders and increasing demand for high data rate wireless digital communication moving us toward the optimal development of communication technology. Wireless communication is a technology that plays an important role in current technology transformation. Broadband communication is a method of telecommunication that are available for transmitting large amounts of data, voice and video over long distance using different frequencies. Specifically, Low Noise Amplifier which is located at the first block of receiver system, makes it one of the important element in improving signal transmition. This study was aimed to design a microwave Low Noise Amplifier for wireless application that will work at 5.8 GHz using  high-performance low noise superHEMT transistor FHX76LP manufactured by Eudyna Technologies. The low noise amplifier (LNA) produced gain of 16.8 dB and noise figure (NF) of 1.20 dB. The input reflection (S<sub>11</sub>) and output return loss (S<sub>22</sub>) are -10.5 dB and -13.3 dB respectively. The bandwidth of the amplifier recorded is 1.2 GHz. The input sensitivity is compliant with the IEEE 802.16 standards.</p>


2016 ◽  
Vol 78 (5-10) ◽  
Author(s):  
Abu Bakar Ibrahim ◽  
Ahmad Zamzuri Mohamad Ali ◽  
Che Zalina Zulkifli

This paper present a microwave low noise amplifier based on ladder matching networks for Wireless applications. The designed circuit is simulated with Advanced Design System (ADS) software. Specifically, Low Noise Amplifier which is located at the first block of receiver system, makes it one of the important element in improving signal transmition. From the statement above, this study was aimed to design a microwave low noise amplifier for wireless application that will work at 5.8 GHz using high-performance low noise superHEMT transistor FHX76LP manufactured by Eudyna Technologies. The low noise amplifier (LNA) produced gain of 17.2 dB and noise figure (NF) of 0.914 dB. The input reflection (S11) and output return loss (S22) are -17.8 dB and -19.6 dB respectively. The bandwidth of the amplifier recorded is 1.5 GHz. The input sensitivity is compliant with the IEEE 802.16d standards.


2021 ◽  
Vol 16 (4) ◽  
pp. 559-564
Author(s):  
Chao Huang ◽  
Wan-Jun Yin

This paper designs a body-biased (BB) differential cascode low-noise amplifier (LNA) with current bias (CR) and capacitor cross-coupling (CCC) technology that meets the bandwidth requirements of 5 GHz wireless applications. In the design, the CCC technology in the differential cascode topology is used to effectively suppress the common mode noise, thereby improving the noise figure. The series resonant network eliminates parasitic capacitance at the input and output ends, thereby improving the power transmission efficiency. The CR technology formed by the intermediate capacitor shares the DC current input to the output device, thereby increasing the gain. This paper uses BB technology in the design to lower the threshold of the cascode device and improve the transconductance, which further improves the gain and reduces the power consumption. The CCC technology used in the paper improves linearity by eliminating the non-linear components present in the input device, which will not interfere with the transconductance of the output stage. This article has obtained excellent performance parameters including gain, noise figure (NF) and linearity without affecting the power consumption, integration and cost of the proposed design.


Author(s):  
Abu Bakar Ibrahim ◽  
Che Zalina Zulkifli ◽  
Shamsul Arrieya Ariffin ◽  
Nurul Husna Kahar

The low noise amplifier (LNA) circuit is exceptionally imperative as it promotes and initializes general execution performance and quality of the mobile communication system. LNA's design in radio frequency (R.F.) circuit requires the trade-off numerous imperative features' including gain, noise figure (N.F.), bandwidth, stability, sensitivity, power consumption, and complexity. Improvements to the LNA's overall performance should be made to fulfil the worldwide interoperability for microwave access (WiMAX) specifications' prerequisites. The development of front-end receiver, particularly the LNA, is genuinely pivotal for long-distance communications up to 50 km for a particular system with particular requirements. The LNA architecture has recently been designed to concentrate on a single transistor, cascode, or cascade constrained in gain, bandwidth, and noise figure.


2009 ◽  
Vol 1 (5) ◽  
pp. 447-452 ◽  
Author(s):  
Heesong Seo ◽  
Hyejeong Song ◽  
Changjoon Park ◽  
Jehyung Yoon ◽  
Inyoung Choi ◽  
...  

A 2.4 GHz CMOS blocker filtering low-noise amplifier (BF-LNA) suitable for Bluetooth™ application is presented. The circuit employs a differential amplifier topology with a current mirror active load and a notch filter. Each path amplifies differentially with the common mode input signal, but there is a notch filter rejecting only the wanted signal at one path. By subtracting the two signals from each path, the large interferers are rejected and only the wanted signal is amplified. Therefore, it becomes a narrow-band amplifier with blocker filtering capability, realizing a receiver system without need of the off-chip SAW filter. The BF-LNA is designed using a 0.13-μm CMOS process. The measured performances are a gain of 11.4 dB, and a noise figure of 1.85 dB. Attenuation levels at 400 MHz apart from the target frequency are −13 and −29 dBc at each sideband. The P1dB,in and IIP3 are −8.2 and 1.46 dBm, respectively. The proposed BF-LNA can reject large interferers at the front-end of the receiver system with a good noise figure.


2020 ◽  
Vol 70 (6) ◽  
pp. 633-641
Author(s):  
Shivesh Triapthi ◽  
B. Mohapatra ◽  
Prabhakar Tiwari ◽  
Nagendra Prasad Pathak ◽  
Manoranjan Parida

This paper presents the design, simulation, and characterization of a novel low-noise amplifier (LNA) and active mixer for intelligent transportation system applications. A low noise amplifier is the key component of RF receiver systems. Design, simulation, and characterization of LNA have been performed to obtain the optimum value of noise figure, gain and reflection coefficient. Proposed LNA achieves measured voltage gains of ~18 dB, reflection coefficients of -20 dB, and noise figures of ~2 dB at 5.9 GHz, respectively. The active mixer is a better choice for a modern receiver system over a passive mixer. Key sight advanced design system in conjunction with the electromagnetic simulation tool, has been to obtain the optimal conversion gain and noise figure of the active mixer. The lower and upper resonant frequencies of mixer have been obtained at 2.45 GHz and 5.25 GHz, respectively. The measured conversion gains at lower and upper frequencies are 12 dB and 10.2 dB, respectively. The measured noise figures at lower and upper frequencies are 5.8 dB and 6.5 dB, respectively. The measured mixer interception point at lower and upper frequencies are 3.9 dBm and 4.2 dBm.


2007 ◽  
Vol 17 (7) ◽  
pp. 546-548 ◽  
Author(s):  
T. Gaier ◽  
L. Samoska ◽  
A. Fung ◽  
W. R. Deal ◽  
V. Radisic ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document