scholarly journals Tiarrah Computing: The Next Generation of Computing

Author(s):  
Yanish Pradhananga ◽  
Pothuraju Rajarajeswari

The evolution of Internet of Things (IoT) brought about several challenges for the existing Hardware, Network and Application development. Some of these are handling real-time streaming and batch bigdata, real- time event handling, dynamic cluster resource allocation for computation, Wired and Wireless Network of Things etc. In order to combat these technicalities, many new technologies and strategies are being developed. Tiarrah Computing comes up with integration the concept of Cloud Computing, Fog Computing and Edge Computing. The main objectives of Tiarrah Computing are to decouple application deployment and achieve High Performance, Flexible Application Development, High Availability, Ease of Development, Ease of Maintenances etc. Tiarrah Computing focus on using the existing opensource technologies to overcome the challenges that evolve along with IoT. This paper gives you overview of the technologies and design your application as well as elaborate how to overcome most of existing challenge.

Author(s):  
Yanish Pradhananga ◽  
Pothuraju Rajarajeswari

The evolution of Internet of Things (IoT) brought about several challenges for the existing Hardware, Network and Application development. Some of these are handling real-time streaming and batch bigdata, real- time event handling, dynamic cluster resource allocation for computation, Wired and Wireless Network of Things etc. In order to combat these technicalities, many new technologies and strategies are being developed. Tiarrah Computing comes up with integration the concept of Cloud Computing, Fog Computing and Edge Computing. The main objectives of Tiarrah Computing are to decouple application deployment and achieve High Performance, Flexible Application Development, High Availability, Ease of Development, Ease of Maintenances etc. Tiarrah Computing focus on using the existing opensource technologies to overcome the challenges that evolve along with IoT. This paper gives you overview of the technologies and design your application as well as elaborate how to overcome most of existing challenge.


Agronomy ◽  
2019 ◽  
Vol 9 (5) ◽  
pp. 216 ◽  
Author(s):  
Carlos Cambra Baseca ◽  
Sandra Sendra ◽  
Jaime Lloret ◽  
Jesus Tomas

New technologies have the potential to transform agriculture and to reduce environmental impact through a green revolution. Internet of Things (IoT)-based application development platforms have the potential to run farm management tools capable of monitoring real-time events when integrated into interactive innovation models for fertirrigation. Their capabilities must extend to flexible reconfiguration of programmed actions. IoT platforms require complex smart decision-making systems based on data-analysis and data mining of big data sets. In this paper, the advantages are demonstrated of a powerful tool that applies real-time decisions from data such as variable rate irrigation, and selected parameters from field and weather conditions. The field parameters, the index vegetation (estimated using aerial images), and the irrigation events, such as flow level, pressure level, and wind speed, are periodically sampled. Data is processed in a decision-making system based on learning prediction rules in conjunction with the Drools rule engine. The multimedia platform can be remotely controlled, and offers a smart farming open data network with shared restriction levels for information exchange oriented to farmers, the fertilizer provider, and agricultural technicians that should provide the farmer with added value in the form of better decision making or more efficient exploitation operations and management.


2014 ◽  
Vol 25 (4) ◽  
pp. 279-287 ◽  
Author(s):  
Stefan Hey ◽  
Panagiota Anastasopoulou ◽  
André Bideaux ◽  
Wilhelm Stork

Ambulatory assessment of emotional states as well as psychophysiological, cognitive and behavioral reactions constitutes an approach, which is increasingly being used in psychological research. Due to new developments in the field of information and communication technologies and an improved application of mobile physiological sensors, various new systems have been introduced. Methods of experience sampling allow to assess dynamic changes of subjective evaluations in real time and new sensor technologies permit a measurement of physiological responses. In addition, new technologies facilitate the interactive assessment of subjective, physiological, and behavioral data in real-time. Here, we describe these recent developments from the perspective of engineering science and discuss potential applications in the field of neuropsychology.


MRS Bulletin ◽  
1997 ◽  
Vol 22 (10) ◽  
pp. 5-6
Author(s):  
Horst D. Simon

Recent events in the high-performance computing industry have concerned scientists and the general public regarding a crisis or a lack of leadership in the field. That concern is understandable considering the industry's history from 1993 to 1996. Cray Research, the historic leader in supercomputing technology, was unable to survive financially as an independent company and was acquired by Silicon Graphics. Two ambitious new companies that introduced new technologies in the late 1980s and early 1990s—Thinking Machines and Kendall Square Research—were commercial failures and went out of business. And Intel, which introduced its Paragon supercomputer in 1994, discontinued production only two years later.During the same time frame, scientists who had finished the laborious task of writing scientific codes to run on vector parallel supercomputers learned that those codes would have to be rewritten if they were to run on the next-generation, highly parallel architecture. Scientists who are not yet involved in high-performance computing are understandably hesitant about committing their time and energy to such an apparently unstable enterprise.However, beneath the commercial chaos of the last several years, a technological revolution has been occurring. The good news is that the revolution is over, leading to five to ten years of predictable stability, steady improvements in system performance, and increased productivity for scientific applications. It is time for scientists who were sitting on the fence to jump in and reap the benefits of the new technology.


Author(s):  
Muhammad Faris Roslan ◽  
◽  
Afandi Ahmad ◽  
Abbes Amira ◽  
◽  
...  

Agriculture ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 514
Author(s):  
Javier Jorge-Vázquez ◽  
Mª Peana Chivite-Cebolla ◽  
Francisco Salinas-Ramos

The digitization of the agri-food sector is a strategic priority in the political agenda of European institutions. The opportunity to improve the competitiveness and efficiency of the sector offered by new technologies comes together with its potential to face new economic and environmental challenges. This research aims to analyze the level of digitalization of the European agri-food cooperative sector from the construction of a composite synthetic index. Such an index is to be based on a diverse set of variables related to electronic commerce and the services offered through the internet. It also evaluates how European cooperatives influence the degree of technological adoption depending on their size or the wealth of the country where they carry out their activity. The empirical analytical method is thus used, through the analysis of frequencies and correlations. The results obtained reveal the existence of a suboptimal and heterogeneous degree of digitization of European agri-food cooperatives, clearly conditioned by their size and the wealth of the country where they operate. In this situation, it is recommended to promote public policies that guarantee high-performance digital connectivity, an improvement in training in digital skills and the promotion of cooperative integration processes.


Sign in / Sign up

Export Citation Format

Share Document