High Penetration PV in Distribution Networks, Design and Control

Author(s):  
Ashkan Mohammadi ◽  
Saman Hosseini Hemati

<p>Global warming is a direct consequence of consumption of fossil fuels which emit greenhouse gasses as they produce energy. Solar energy is the most available energy throughout the world in which regardless of capital investment is free and most importantly clean and emission free and could be a solution for global warming along with other renewable sources of energy. But as photovoltaic energy is becoming widespread and penetration level of photovoltaic power plants increase, several issues rise in distribution networks. In this paper, a high penetration photovoltaic power plant is designed and issues associated with it are thoroughly discussed. Voltage rise and cloud passage effect are amongst the most challenging issues in design and implementation of a high penetration photovoltaic power plant in distribution networks. Transient effects of cloud passage could lead to unacceptably low voltage in Point of Common Coupling and maximum penetration level must be set according to these issues. An efficient Maximum Power Point Tracking (MPPT) and a DC link voltage control scheme are also presented. Simulations have been done in Matlab/Simulink environment.</p>

Energies ◽  
2019 ◽  
Vol 12 (12) ◽  
pp. 2356 ◽  
Author(s):  
Ferdinando Chiacchio ◽  
Fabio Famoso ◽  
Diego D’Urso ◽  
Luca Cedola

Grid-connected low voltage photovoltaic power plants cover most of the power capacity installed in Italy. They offer an important contribution to the power demand of the utilities connected but, due to the nature of the solar resource, the night-time consumption can be satisfied only withdrawing the energy by the national grid, at the price of the energy distributor. Thanks to the improvement of storage technologies, the installation of a system of battery looks like a promising solution by giving the possibility to increase auto-consumption dramatically. In this paper, a model-based approach to analyze and discuss the performance and the economic feasibility of grid-connected domestic photovoltaic power plants with a storage system is presented. Using as input to the model the historical series (2008–2017) of the main ambient variables, the proposed model, based on Stochastic Hybrid Fault Tree Automaton, allowed us to simulate and compare two alternative technical solutions characterized by different environmental conditions, in the north and in the south of Italy. The performances of these systems were compared and an economic analysis, addressing the convenience of the storage systems was carried out, considering the characteristic useful-life time, 20 years, of a photovoltaic power plant. To this end the Net Present Value and the payback time were evaluated, considering the main characteristics of the Italian market scenario.


Author(s):  
Mykola Volodymyrovych Bazylevych

The modes of the electrical network have not been calculated for the photovoltaic power plants if they are used for small and medium-sized applications. It is known that the voltage at the point of installation of a photovoltaics power plant may exceed the critical limit voltage and as a result it may cause the emergency with the electrical equipment. According to the existing methods, it is possible to find the voltage only by full electrical network modes calculating. In practice such calculation is not convenient, especially for 0.4 kV distribution networks. The suggestion is to find the most probable limit voltage at the point of installation of a photovoltaic power plant without calculating the mode of the electrical network using instead the information about the voltage value in the power supply centre. The voltage at the installation point of the photovoltaic power plant mainly depends on the generated power of the photovoltaics power plant, line resistance, load power connected to a voltage of 0.4 kV and bus voltages of 0.4 kV of the power supply. The voltage hardly depends on the power of the power transformer, the parameters of 10 kV lines and the parameters of 0.4 kV lines, except for the line "power centre–photovoltaic power plant". The highest voltage at the point of installation of the photovoltaics power plant will be in the case when the load on the line is absent. The suggested methods allow finding analytically the maximum value of voltage at the point of installation of a photovoltaic power plant without using of the successive approximations methods. As a rule the photovoltaics power plant operates in the mode of delivery of the maximum active power. By the range of various analytical formulas, the value of voltage at the point of installation of a photovoltaic power plant has been determined. The accuracy of finding the voltage by different formulas has also been determined. It is established that in order to achieve the required accuracy, the dependence of the current at the output of the photovoltaics power plant on the voltage at the connection point should be taken into account. Modification of formulas for the purpose of simplification of their application is considered. The conditions for finding the maximum possible voltage value at the point of installation of a photovoltaics power plant are considered. This requires that the argument of the voltage drop vector on the line be equal to the argument of the voltage vector on the busbars of the power supply. This is achieved by the fact that the photovoltaic power plant generates active and reactive power in a certain ratio. It is shown the inexpediency of finding the maximum possible voltage value at the point of installation of a photovoltaic power plant due to a small difference with the most possible voltage value with a significant complication of calculations.


2016 ◽  
Vol 54 (3) ◽  
pp. 189-207 ◽  
Author(s):  
Dubravko Frankovic ◽  
Vedran Kirincic ◽  
Vladimir Valentic

Renewable energy sources have become a considerable part of electric transmission networks as well as medium and low voltage distribution networks. Understanding the overall process from design stage up to the installation stage, followed by the commissioning and startup of renewable energy sources plants is essential knowledge that electric engineers nowadays should posses. Therefore, in the first part of the article activities, conducted at the Faculty of Engineering, University of Rijeka, Croatia, necessary for the installation of a fully operational, grid connected photovoltaic power plant with dual-axis tracking system have been described. Consequently, upon photovoltaic plant’s installation and commissioning, students are able to have ‘hands-on’ on a fully functional photovoltaic power plant and perform supervised, ‘live’ measurements and compare it with previously calculated values. Therefore, new – dedicated laboratory sessions have been introduced in an existing subject to make the most of the photovoltaic installation in the teaching process. In the second part, the article is mainly focused on the newly introduced laboratory sessions as well as on the educational framework and methodology. Some of the experiments that our students are able to perform include alternating current and direct current operating values measurements (photovoltaic string and inverter voltages, currents, power, efficiency, etc.), environmental parameters measurements (irradiance, air temperature, wind direction, velocity, etc.) and grounding parameters measurements (soil resistivity, photovoltaic plant’s grounding resistance). The acquired knowledge gained from the activities performed during our educational photovoltaic plant project realization give us the ability to propose a methodology that can be used as the key model for other universities and faculties.


2022 ◽  
Vol 0 (0) ◽  
Author(s):  
Qusay Hassan ◽  
Saadoon Abdul Hafedh ◽  
Ali Hasan ◽  
Marek Jaszczur

Abstract The study evaluates the visibility of solar photovoltaic power plant construction for electricity generation based on a 20 MW capacity. The assessment was performed for four main cities in Iraq by using hourly experimental weather data (solar irradiance, wind speed, and ambient temperature). The experimental data was measured for the period from 1st January to 31st December of the year 2019, where the simulation process was performed at a 1 h time step resolution at the same resolution as the experimental data. There are two positionings considered for solar photovoltaic modules: (i) annual optimum tilt angle and (ii) two-axis tracking system. The effect of the ambient temperature and wind on the overall system energy generated was taken into consideration. The study is targeted at evaluating the potential solar energy in Iraq and the viability of electricity generation using a 20 MW solar photovoltaic power plant. The results showed that the overall performance of the suggested power plant capacity is highly dependent on the solar irradiance intensity and the ambient temperature with wind speed. The current 20 MW solar photovoltaic power plant capacity shows the highest energy that can be generated in the mid-western region and the lowest in the northeast regions. The greatest influence of the ambient temperature on the energy genrated by power plants is observed in the southern regions.


2020 ◽  
Vol 12 (20) ◽  
pp. 3420 ◽  
Author(s):  
Alexandra I. Khalyasmaa ◽  
Stanislav A. Eroshenko ◽  
Valeriy A. Tashchilin ◽  
Hariprakash Ramachandran ◽  
Teja Piepur Chakravarthi ◽  
...  

This article highlights the industry experience of the development and practical implementation of a short-term photovoltaic forecasting system based on machine learning methods for a real industry-scale photovoltaic power plant implemented in a Russian power system using remote data acquisition. One of the goals of the study is to improve photovoltaic power plants generation forecasting accuracy based on open-source meteorological data, which is provided in regular weather forecasts. In order to improve the robustness of the system in terms of the forecasting accuracy, we apply newly derived feature introduction, a factor obtained as a result of feature engineering procedure, characterizing the relationship between photovoltaic power plant energy production and solar irradiation on a horizontal surface, thus taking into account the impacts of atmospheric and electrical nature. The article scrutinizes the application of different machine learning algorithms, including Random Forest regressor, Gradient Boosting Regressor, Linear Regression and Decision Trees regression, to the remotely obtained data. As a result of the application of the aforementioned approaches together with hyperparameters, tuning and pipelining of the algorithms, the optimal structure, parameters and the application sphere of different regressors were identified for various testing samples. The mathematical model developed within the framework of the study gave us the opportunity to provide robust photovoltaic energy forecasting results with mean accuracy over 92% for mostly-sunny sample days and over 83% for mostly cloudy days with different types of precipitation.


2019 ◽  
Vol 122 ◽  
pp. 02004 ◽  
Author(s):  
Javier Menéndez ◽  
Jorge Loredo

In 2017, electricity generation from renewable sources contributed more than one quarter (30.7%) to total EU-28 gross electricity consumption. Wind power is for the first time the most important source, followed closely by hydro power. The growth in electricity from photovoltaic energy has been dramatic, rising from just 3.8 TWh in 2007, reaching a level of 119.5 TWh in 2017. Over this period, the contribution of photovoltaic energy to all electricity generated in the EU-28 from renewable energy sources increased from 0.7% to 12.3%. During this period the investment cost of a photovoltaic power plant has decreased considerably. Fundamentally, the cost of solar panels and inverters has decreased by more than 50%. The solar photovoltaic energy potential depends on two parameters: global solar irradiation and photovoltaic panel efficiency. The average solar irradiation in Spain is 1,600 kWh m-2. This paper analyzes the economic feasibility of developing large scale solar photovoltaic power plants in Spain. Equivalent hours between 800-1,800 h year-1 and output power between 100-400 MW have been considered. The profitability analysis has been carried out considering different prices of the electricity produced in the daily market (50-60 € MWh-1). Net Present Value (NPV) and Internal Rate of Return (IRR) were estimated for all scenarios analyzed. A solar PV power plant with 400 MW of power and 1,800 h year-1, reaches a NPV of 196 M€ and the IRR is 11.01%.


Sign in / Sign up

Export Citation Format

Share Document