scholarly journals Improved model for investigating transient stability in multimachine power systems

Author(s):  
Ali Hamzeh ◽  
Zakaria Al-Omari

<span>The determinant factor in transient stability study of electric power systems is the behavior of synchronous generators when subjected to sudden and large disturbances. The objective of this paper is to develop a mathematical model, general algorithm, and a computer program to investigate the transient stability of multi-machine power systems. The developed mathematical model is established as a first step. The new developments lie in modeling the fault occurrence and fault clearance as well as the procedure of computing the system matrices during and after the fault through only modification of the matrix before the fault. Based on the developed mathematical model, a general algorithm was built and translated into a computer program using an object-oriented and visual language called Delphi. The algorithm adopted the Runge-Kutta method for numerical solution of differential swing equations and was programmed within the program. The developed program was validated by applying it to small sample electrical networks. The program was used to analyze the transient stability of a relatively large test network and accurate results were obtained that could be relied upon for protective relays settings and optimization of control system parameters. It was found that the developed program is an effective and rapid tool for estimating transitory stability for real power systems.</span>

1973 ◽  
Vol 95 (2) ◽  
pp. 629-635 ◽  
Author(s):  
D. A. Smith ◽  
M. A. Chace ◽  
A. C. Rubens

This paper presents a detailed explanation of a technique for automatically generating a mathematical model for machinery systems. The process starts from a relatively small amount of input data and develops the information required to model a mechanical system with Lagrange’s equation. The technique uses elements of graph theory which were developed for electrical networks. The basic identifications required for mechanical systems are: paths from ground to mass centers, the independent loops of parts, if any, and paths associated with applied force effects. The techniques described in this paper have been used successfully in a generalized computer program, DAMN.


Author(s):  
Saber M. Saleh ◽  
Mohamed E. Arafa

Harmonics in electrical networks occur as a result of non-linear loads.  It has an effect on power factor improvement using capacitors in terms of increasing the unbalance current between units. In addition, the occurrence of resonance and result in the exit of capacitors from service by the protective relays to protect the units from collapse. The main objective of this research is the real-time study of improving the power factor with reducing the effect of the resonance and harmonics on the power system. This reduction can be done using filters, consist of reactors and capacitors connected in series or in parallel or series and parallel together to reduce the current harmonics or voltage harmonics. Single Tuned filter type (passive filter) is used which presents very low impedance at the tuning frequency, through which all current of that particular frequency will be diverted. This research presents two practical power systems 11kV source in Fayoum substation and 13.8kV source in New Badr substation connected to power factor Improvement circuit. These models simulated by Matlab at different unbalance currents and harmonics. Also, it presents the design of the series reactor and the harmonics filter which satisfy the minimum effect of resonance and harmonics.


2021 ◽  
Vol 289 ◽  
pp. 07024
Author(s):  
Tulkin Gayibov ◽  
Kamal Reymov ◽  
Arislan Aytbaev

Based on the improvement of existing algorithms, an effective algorithm and program for taking into account the network factor have been developed for optimal planning of short-term modes of power systems with control of the load of power consumers, based on the restructuring of the dependences of the relative gains of losses on the power of nodes with settlement stations and regulated power consumers. As a result, it is possible to determine the optimal short-term modes of power systems, taking into account the network factor in terms of load management of power consumers.


2020 ◽  
Vol 6 (3) ◽  
pp. 27-30
Author(s):  
Pramod Kumar Mehar ◽  
Mrs. Madhu Upadhyay

Power system stability is related to principles of rotational motion and the swing equation governing the electromechanical dynamic behavior. In the special case of two finite machines the equal area criterion of stability can be used to calculate the critical clearing angle on the power system, it is necessary to maintain synchronism, otherwise a standard of service to the consumers will not be achieved. With the increasing penetration of doubly fed induction generators (DFIGs), the impact of the DFIG on transient stability attracts great attention. Transient stability is largely dominated by generator types in the power system, and the dynamic characteristics of DFIG wind turbines are different from that of the synchronous generators in the conventional power plants. The analysis of the transient stability on DFIG integrated power systems has become a very important issue. This paper is a review of three types of stability condition. The first type of stability, steady state stability explains the maximum steady state power and the power angle diagram. There are several methods to improve system stability in which some methods are explained.


1976 ◽  
Vol 13 (2) ◽  
pp. 132-141 ◽  
Author(s):  
V. R. Sastry

Transient stability of multimachine power systems is discussed using the concepts of modern control theory e.g. state variables, Lyapunov functions. The points discussed include the mathematical model, dimension of the state space, effect of damping on stability, validity of neglecting transfer conductances, also suggestions for further work in the area.


With the evolution of electrical networks, the complexity and non linearity of modern power systems has enhanced exponentially. In order to reduce these potentially harmful oscillations, power system stabilizers (PSS) are introduced in generators of modern power systems. The PSS brings the system back to a stable and balanced state and re-establishes the pre-fault performance of the system after removal of disturbance and restoration of line. However utilization of PSS in certain cases of increased transmission line loading and other significant faults is not very effective and is rather time consuming. These days to acquire better control and quality of power, FACTS devices are being commonly used in large power systems. When SVC, a versatile FACTS device is used simultaneously with PSS, there is not only improvement in power transfer capability and controllability but also a distinct enhancement in power system stability. In order to increase the performance of the conventional PID controller of the PSS, it is tuned with a very simple and quick tuning method called Zeigler Nichols (ZN) which provides very fast elimination to disturbances in power system. However the conventional and ZN based PID controllers are confined only to linear control of power system. To further enhance the dynamic tuning process in order to obtain much faster and better transient as well as dynamic stability, a very adaptable and robust nature inspired technique of Flower Pollination Algorithm (FPA) is used to tune the ZN based PID controller. To realise the system transient stability for the conventional and proposed method, root locus and total harmonic distortion techniques have been adopted. The results ultimately reveal the efficacy and productiveness of FP based ZN- PID in successfully damping out inter area oscillations thus reducing the harmonics and improving overall stability in power systems as compared to other tuning methods


2008 ◽  
Vol 42 (6-8) ◽  
pp. 911-922 ◽  
Author(s):  
Delphine Rui ◽  
Nicolas Retière ◽  
Octavian Entcheanu

Sign in / Sign up

Export Citation Format

Share Document