scholarly journals Impact of engineering parameters on performance of relay-assisted network

Author(s):  
Issam Maaz ◽  
Jean-Marc Conrat ◽  
Jean-Christophe Cousin ◽  
Samer Alabed

<span>This paper compares the performance of a relay assisted network to the performance given by a classical macrocell network without the presence of relay node schemes. The capacity enhancement provided by a relaying system as a function of the relay antenna height and the propagation environment surrounding the relay nodes is analyzed and discussed in details. The analysis in this work is based on the theoretical Shannon capacity where both measured/experimental path loss and calibrated path loss models are taken into consideration. In this work, we assume a decode and forward scheme, a full-duplex relaying protocol and an optimized relay location is investigated. A 30 % of improvement in the macrocell capacity is achieved with the usage of relaying scenario compared to a classical macrocell network. Furthermore, increasing the relay antenna height from 4 meters to 12 meters can significantly increase the relay capacity to more than 20 % in suburban and moderate urban environments.</span>

2012 ◽  
Vol 2012 ◽  
pp. 1-21 ◽  
Author(s):  
Caleb Phillips ◽  
Douglas Sicker ◽  
Dirk Grunwald

We seek to provide practical lower bounds on the prediction accuracy of path loss models. We describe and implement 30 propagation models of varying popularity that have been proposed over the last 70 years. Our analysis is performed using a large corpus of measurements collected on production networks operating in the 2.4 GHz ISM, 5.8 GHz UNII, and 900 MHz ISM bands in a diverse set of rural and urban environments. We find that the landscape of path loss models is precarious: typical best-case performance accuracy of these models is on the order of 12–15 dB root mean square error (RMSE) and in practice it can be much worse. Models that can be tuned with measurements and explicit data fitting approaches enable a reduction in RMSE to 8-9 dB. These bounds on modeling error appear to be relatively constant, even in differing environments and at differing frequencies. Based on our findings, we recommend the use of a few well-accepted and well-performing standard models in scenarios wherea prioripredictions are needed and argue for the use of well-validated, measurement-driven methods whenever possible.


2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Phu Tran Tin ◽  
Phan Van-Duc ◽  
Tan N. Nguyen ◽  
Le Anh Vu

In this paper, we investigate the full-duplex (FD) decode-and-forward (DF) cooperative relaying system, whereas the relay node can harvest energy from radiofrequency (RF) signals of the source and then utilize the harvested energy to transfer the information to the destination. Specifically, a hybrid time-power switching-based relaying method is adopted, which leverages the benefits of time-switching relaying (TSR) and power-splitting relaying (PSR) protocols. While energy harvesting (EH) helps to reduce the limited energy at the relay, full-duplex is one of the most important techniques to enhance the spectrum efficiency by its capacity of transmitting and receiving signals simultaneously. Based on the proposed system model, the performance of the proposed relaying system in terms of the ergodic capacity (EC) is analyzed. Specifically, we derive the exact closed form for upper bound EC by applying some special function mathematics. Then, the Monte Carlo simulations are performed to validate the mathematical analysis and numerical results.


2021 ◽  
Vol 9 ◽  
Author(s):  
Jiaoli Liu ◽  
Jinyuan Wang ◽  
Bingyuan Zhang ◽  
Qinglin Wang

In this article, the secrecy performance of a hybrid radio frequency (RF)/visible light communication (VLC) system is studied. In this hybrid system, the source node (i.e., Alice) transmits information to the relay node via the outdoor RF link. Nakagami-m fading and path loss are considered for the RF link. The relay node includes an outdoor component and an indoor component, which are connected by using a wired medium. The outdoor component receives and recovers information by using the decode-and-forward (DF) relaying scheme and then transmits it to the indoor component. The indoor component then converts the received electrical signal into an optical signal by using a light-emitting diode. A legitimate receiver (i.e., Bob) deployed on the floor receives the optical signal. An eavesdropper (i.e., Eve) deployed in the RF or VLC link wiretaps the confidential information. In this study, we use the secrecy outage probability (SOP) and the probability of strictly positive secrecy capacity (SPSC) to evaluate the system performance. We then obtain the closed-form expression for a lower bound on the SOP and an exact closed-form expression for the probability of SPSC when the RF and VLC links are wiretapped, respectively. Numerical results are presented to validate the accuracy of our derivations. We further discuss the effects of the noise standard deviation, the equivalent threshold of the signal-to-noise ratio, and the floor radius on the system secrecy performance when the VLC link is eavesdropped upon. For the case when the RF link is eavesdropped upon, the impacts of the distance between Alice and the relay, the path loss exponent, the fading factor, and the distance between Alice and Eve on secrecy performance are also provided.


Energies ◽  
2021 ◽  
Vol 14 (4) ◽  
pp. 937
Author(s):  
Sangku Lee ◽  
Janghyuk Youn ◽  
Bang Chul Jung

For the next generation of manufacturing, the industrial internet of things (IoT) has been considered as a key technology that enables smart factories, in which sensors transfer measured data, actuators are controlled, and systems are connected wirelessly. In particular, the wireless sensor network (WSN) needs to operate with low cost, low power (energy), and narrow spectrum, which are the most technical challenges for industrial IoT networks. In general, a relay-assisted communication network has been known to overcome scarce energy problems, and a spectrum-sharing technique has been considered as a promising technique for the radio spectrum shortage problem. In this paper, we propose a phase steering based hybrid cooperative relaying (PSHCR) technique for the generic relay-assisted spectrum-shared WSN, which consists of a secondary transmitter, multiple secondary relays (SRs), a secondary access point, and multiple primary access points. Basically, SRs in the proposed PSHCR technique operate with decode-and-forward (DF) relaying protocol, but it does not abandon the SRs that failed in decoding at the first hop. Instead, the SRs operate with amplify-and-forward (AF) protocol when they failed in decoding at the first hop. Furthermore, the SRs (regardless of operating with AF or DF protocol) that satisfy interference constraints to the primary network are allowed to transmit a signal to the secondary access point at the second hop. Note that phase distortion is compensated through phase steering operation at each relay node before second-hop transmission, and thus all relay nodes can operate in a fully distributed manner. Finally, we validate that the proposed PSHCR technique significantly outperforms the existing best single relay selection (BSR) technique and cooperative phase steering (CPS) technique in terms of outage performance via extensive computer simulations.


2021 ◽  
Author(s):  
Binod Prasad ◽  
Gopal Chandra Das ◽  
Srinivas Nallagonda ◽  
Seemanti Saha ◽  
Abhijit Bhowmick

Abstract The performance of a relay based Half-Duplex (HD) and Full-Duplex (FD) cooperative cognitive radio (CR) network with a RF energy harvesting (EH) is studied in this paper. Co-operative environment includes a network with multiple primary users (PUs), and CRs. The relay node is considered as an EH node which harvests energy (HE) from RF signal (RFS) of source and loop-back interference. The network performance is studied for instantaneous transmission and delay constraint transmission for decode and forward (DF) relaying protocol. The performance is investigated under a relay energy outage constraint and the expression of throughput is redesigned. Expressions of energy outage, data outage and throughput for HD and FD are developed. The impact of several parameters such as transmitting SNR, fractional harvesting time parameter, fractional transmission time parameter, and loop-back interference on the system throughput has been investigated.


2010 ◽  
Vol 2010 ◽  
pp. 1-12 ◽  
Author(s):  
Abdallah Bou Saleh ◽  
Simone Redana ◽  
Jyri Hämäläinen ◽  
Bernhard Raaf

Decode-and-forward relaying is a promising enhancement to existing radio access networks and is currently being standardized in 3GPP to be part of the LTE-Advanced release 10. Two inband operation modes of relay nodes are to be supported, namely Type 1 and Type 1b. Relay nodes promise to offer considerable gain for system capacity or coverage depending on the deployment prioritization. However, the performance of relays, as any other radio access point, significantly depends on the propagation characteristics of the deployment environment. Hence, in this paper, we investigate the performance of Type 1 and Type 1b inband relaying within the LTE-Advanced framework in different propagation scenarios in terms of both coverage extension capabilities and capacity enhancements. A comparison between Type 1 and Type 1b relay nodes is as well presented to study the effect of the relaying overhead on the system performance in inband relay node deployments. System level simulations show that Type 1 and Type 1b inband relay deployments offer low to very high gains depending on the deployment environment. As well, it is shown that the effect of the relaying overhead is minimal on coverage extension whereas it is more evident on system throughput.


2019 ◽  
Vol 2019 ◽  
pp. 1-11 ◽  
Author(s):  
Ba Cao Nguyen ◽  
Tran Manh Hoang ◽  
Xuan Nghia Pham ◽  
Phuong T. Tran

In this paper, a combination of energy harvesting (EH) and cooperative nonorthogonal multiple access (NOMA) has been proposed for full-duplex (FD) relaying vehicle-to-vehicle (V2V) networks with two destination nodes over a Rayleigh fading channel. Different from previous studies, here both source and relay nodes are supplied with the energy from a power beacon (PB) via RF signals, and then use the harvested energy for transmitting the information. For the extensive performance analysis, the closed-form expressions for the performance indicators, including outage probability (OP) and ergodic capacity of both users, have been derived rigorously. Additionally, the effect of various parameters, such as EH time duration, residual self-interference (RSI) level, and power allocation coefficients, on the system performance has also been investigated. Furthermore, all mathematical analytical results are confirmed by Monte-Carlo simulations, which also demonstrate the optimal value of EH time duration to minimize the OP and maximize the ergodic capacity of the proposed system.


2018 ◽  
Vol 2018 ◽  
pp. 1-11 ◽  
Author(s):  
Tan N. Nguyen ◽  
Minh Tran ◽  
Phuong T. Tran ◽  
Phu Tran Tin ◽  
Thanh-Long Nguyen ◽  
...  

The energy harvesting amplify-and-forward full-duplex relaying network over the dissimilar fading environments in imperfect CSI condition is investigated. In this system model, the energy, and information are transferred from the source to the relay nodes by the power splitting protocol with helping of the full-duplex relay node. Firstly, the outage probability, achievable throughput, and the optimal power splitting factor in terms of the analytical mathematical expressions were proposed, analyzed, and demonstrated. Furthermore, the system performance of the proposed model on the connection with all system parameters is rigorously studied. Finally, the numerical results demonstrated and convinced one that the analytical and the simulation results are matched well with each other for all system parameter values using Monte-Carlo simulation. The results show that the system performance degrades significantly but is still in a permissible interval while the channel estimation error increases and the system performance of the mixing scenarios is better in comparison with the Rayleigh-Rayleigh scenario.


2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Phu Tran Tin ◽  
Van-Duc Phan ◽  
Dong Si Thien Chau ◽  
Tan N. Nguyen ◽  
Phu X. Nguyen

This paper investigates the decode-and-forward (DF) full-duplex (FD) relaying system under the presence of an eavesdropper. Moreover, the relay node is able to harvest energy from a transmitter, and then it uses the harvested energy for conveying information to the receiver. Besides, both two-hop and direct relaying links are taking into consideration. In the mathematical analysis, we derived the exact expressions for intercept probability and outage probability (OP) by applying maximal ratio combining (MRC) and selection combining (SC) techniques at the receiver. Next, the Monte Carlo simulation is performed to validate the mathematical analysis. The results show that the simulation curves match the mathematic expressions, which confirms the analysis section.


Sign in / Sign up

Export Citation Format

Share Document