scholarly journals Hybrid AF/DF Cooperative Relaying Technique with Phase Steering for Industrial IoT Networks

Energies ◽  
2021 ◽  
Vol 14 (4) ◽  
pp. 937
Author(s):  
Sangku Lee ◽  
Janghyuk Youn ◽  
Bang Chul Jung

For the next generation of manufacturing, the industrial internet of things (IoT) has been considered as a key technology that enables smart factories, in which sensors transfer measured data, actuators are controlled, and systems are connected wirelessly. In particular, the wireless sensor network (WSN) needs to operate with low cost, low power (energy), and narrow spectrum, which are the most technical challenges for industrial IoT networks. In general, a relay-assisted communication network has been known to overcome scarce energy problems, and a spectrum-sharing technique has been considered as a promising technique for the radio spectrum shortage problem. In this paper, we propose a phase steering based hybrid cooperative relaying (PSHCR) technique for the generic relay-assisted spectrum-shared WSN, which consists of a secondary transmitter, multiple secondary relays (SRs), a secondary access point, and multiple primary access points. Basically, SRs in the proposed PSHCR technique operate with decode-and-forward (DF) relaying protocol, but it does not abandon the SRs that failed in decoding at the first hop. Instead, the SRs operate with amplify-and-forward (AF) protocol when they failed in decoding at the first hop. Furthermore, the SRs (regardless of operating with AF or DF protocol) that satisfy interference constraints to the primary network are allowed to transmit a signal to the secondary access point at the second hop. Note that phase distortion is compensated through phase steering operation at each relay node before second-hop transmission, and thus all relay nodes can operate in a fully distributed manner. Finally, we validate that the proposed PSHCR technique significantly outperforms the existing best single relay selection (BSR) technique and cooperative phase steering (CPS) technique in terms of outage performance via extensive computer simulations.

2017 ◽  
Vol 2017 ◽  
pp. 1-12 ◽  
Author(s):  
Sana Ezzine ◽  
Fatma Abdelkefi ◽  
Jean Pierre Cances ◽  
Vahid Meghdadi ◽  
Ammar Bouallégue

Powerline network is recognized as a favorable infrastructure for Smart Grid to transmit information in the network thanks to its broad coverage and low cost deployment. The existing works are trying to improve and adapt transmission techniques to reduce Powerline Communication (PLC) channel attenuation and exploit the limited bandwidth to support high data rate over long distances. Two-hop relaying BroadBand PLC (BB-PLC) system, in which Orthogonal Frequency Division Multiplexing (OFDM) is used, is considered in this paper. We derive and compare the PLC channel capacity and the end-to-end Average BER (ABER) for OFDM-based direct link (DL) BB-PLC system and for OFDM-based two-hop relaying BB-PLC system for Amplify and Forward (AF) and Decode and Forward (DF) protocols. We analyze the improvements when we consider the direct link in a cooperative communication when the relay node only transmits the correctly decoded signal. Maximum ratio combining is employed at the destination node to detect the transmitted signal. In addition, in this paper, we highlight the impact of the relay location on the channel capacity and ABER for AF and DF transmission protocols. Moreover, an efficient use of the direct link was also investigated in this paper.


Sensors ◽  
2021 ◽  
Vol 21 (14) ◽  
pp. 4783
Author(s):  
Farnaz Khodakhah ◽  
Aamir Mahmood ◽  
Patrik Österberg ◽  
Mikael Gidlund

The increasing proliferation of Internet-of-things (IoT) networks in a given space requires exploring various communication solutions (e.g., cooperative relaying, non-orthogonal multiple access, spectrum sharing) jointly to increase the performance of coexisting IoT systems. However, the design complexity of such a system increases, especially under the constraints of performance targets. In this respect, this paper studies multiple-access enabled relaying by a lower-priority secondary system, which cooperatively relays the incoming information to the primary users and simultaneously transmits its own data. We consider that the direct link between the primary transmitter–receiver pair uses orthogonal multiple access in the first phase. In the second phase, a secondary transmitter adopts a relaying strategy to support the direct link while it uses non-orthogonal multiple access (NOMA) to serve the secondary receiver. As a relaying scheme, we propose a piece-wise and forward (PF) relay protocol, which, depending on the absolute value of the received primary signal, acts similar to decode-and-forward (DF) and amplify-and-forward (AF) schemes in high and low signal-to-noise ratio (SNR), respectively. By doing so, PF achieves the best of these two relaying protocols using the adaptive threshold according to the transmitter-relay channel condition. Under PF-NOMA, first, we find the achievable rate region for primary and secondary receivers, and then we formulate an optimization problem to derive the optimal PF-NOMA time and power fraction that maximize the secondary rate subject to reliability constraints on both the primary and the secondary links. Our simulation results and analysis show that the PF-NOMA outperforms DF-NOMA and AF-NOMA-based relaying techniques in terms of achievable rate regions and rate-guaranteed relay locations.


2020 ◽  
Vol 8 (5) ◽  
pp. 5017-5023

The objective of this paper is to analyse and optimize the performance parameters of Relay nodes used in the finite block length (FBL) regime. A relaying system with a single Decode and Forward (DF) Relay is used for this purpose. Here using FBL, the performance parameters like coding rate, decoding error probability etc are obtained for different scenarios like without relay, with relay and using cooperative relaying. Effects of SNR and code Block length on performance parameters are analyzed. To enhance the performance of the Relay in URLLC scenario, power distribution between source and Relay node is optimized using evolutionary algorithms such as Multi-Objective Particle Swarm Optimization (MOPSO) and Infeasibility Driven Evolutionary Algorithm (IDEA). Low error probability and high throughput at the desired block length and power were the optimization goals. After using both the algorithms, the optimized Relay has shown improvement in performances like throughput (coding rate) and decoding error probability. It is also observed that IDEA optimization approach is found to be more efficient than MOPSO to provide optimum design parameters.


2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Phu Tran Tin ◽  
Phan Van-Duc ◽  
Tan N. Nguyen ◽  
Le Anh Vu

In this paper, we investigate the full-duplex (FD) decode-and-forward (DF) cooperative relaying system, whereas the relay node can harvest energy from radiofrequency (RF) signals of the source and then utilize the harvested energy to transfer the information to the destination. Specifically, a hybrid time-power switching-based relaying method is adopted, which leverages the benefits of time-switching relaying (TSR) and power-splitting relaying (PSR) protocols. While energy harvesting (EH) helps to reduce the limited energy at the relay, full-duplex is one of the most important techniques to enhance the spectrum efficiency by its capacity of transmitting and receiving signals simultaneously. Based on the proposed system model, the performance of the proposed relaying system in terms of the ergodic capacity (EC) is analyzed. Specifically, we derive the exact closed form for upper bound EC by applying some special function mathematics. Then, the Monte Carlo simulations are performed to validate the mathematical analysis and numerical results.


2021 ◽  
Vol 2021 ◽  
pp. 1-15
Author(s):  
Tran Trung Duy ◽  
Pham Thi Dan Ngoc ◽  
Phuong T. Tran

In this paper, we propose and evaluate performance of multihop multipath underlay cognitive radio networks. In a primary network, an uplink nonorthogonal multiple access method is employed to allow primary transmitters to simultaneously transmit their data to a primary receiver. Using an underlay spectrum-sharing method, secondary source and secondary relays must adjust their transmit power to guarantee quality of service of the primary network. Under the limited transmit power, cochannel interference from the primary transmitters, and hardware noises caused by impairments, we propose best-path selection methods to improve the end-to-end performance for the secondary network. Moreover, both multihop decode-and-forward and amplify-and-forward relaying protocols are considered in this paper. We derive expressions of outage probability for the primary and secondary networks and propose an efficient method to calculate the transmit power of the secondary transmitters. Then, computer simulations employing the Monte-Carlo approach are realized to validate the derivations.


Electronics ◽  
2019 ◽  
Vol 8 (1) ◽  
pp. 79 ◽  
Author(s):  
Qiuna Yan ◽  
Yu Sun ◽  
Dian-Wu Yue

In general frequency-selective Ricean fading environments with doubly-ended spatial correlation, this paper investigates the spectral efficiency of a broadband massive multiple-input multiple-output (MIMO) system. In particular, in order to reduce overhead of channel estimation effectively, it proposes a scheme of equal gain transmission and combining, which is only based on line- of-sight (LOS) component and has low hardware complexity. With the scheme, several interesting transmit power scaling properties without and with spatial correlation are derived when the number of antennas at the transmitter or the number of antennas at the receiver grows in an unlimited way. Furthermore, the asymptotical rate analysis is extended to the cooperative relaying scenarios with decode-and-forward and amplify-and-forward protocols, respectively, and then two novel power scaling laws are given.


2019 ◽  
Vol 2019 ◽  
pp. 1-9 ◽  
Author(s):  
Yupeng Li ◽  
Zihao Wang ◽  
Ling Luo ◽  
Zhiyong Chen ◽  
Bin Xia ◽  
...  

In this paper, we investigate an energy harvesting scheme in a smart grid based on the cognitive relay protocol, where a primary transmitter scavenges energy from the nature sources and then employs the harvested energy to forward the primary signal. Depending on the intensity of the energy harvesting from nature, a secondary user dynamically acts as a relay node to assist the primary transmission or does not. When the energy is not enough powerful to support the direct transmission between two primary users, the secondary users share the spectrum by assisting the primary transmission. For the relaying scheme, both amplify-and-forward (AF) and decode-and-forward (DF) protocols are investigated. We analytically obtain the exact transmission rates for both primary and secondary networks and derive the exact expressions of the system outage probabilities for both primary and secondary users in the smart grid. Moreover, we develop the analytically optimal bandwidth allocation strategy to maximize the total sum rate of the proposed scheme. Numerical results are presented to demonstrate the performance gain of the proposed scheme over the nonoptimal scheme.


2017 ◽  
Vol 2017 ◽  
pp. 1-8
Author(s):  
Xianwen He ◽  
Gaoqi Dou ◽  
Jun Gao

We consider the training design and channel estimation in the amplify-and-forward (AF) diamond relay network. Our strategy is to transmit the source training in time-multiplexing (TM) mode while each relay node superimposes its own relay training over the amplified received data signal without bandwidth expansion. The principal challenge is to obtain accurate channel state information (CSI) of second-hop link due to the multiaccess interference (MAI) and cooperative data interference (CDI). To maintain the orthogonality between data and training, a modified relay-assisted training scheme is proposed to migrate the CDI, where some of the cooperative data at the relay are discarded to accommodate relay training. Meanwhile, a couple of optimal zero-correlation zone (ZCZ) relay-assisted sequences are designed to avoid MAI. At the destination node, the received signals from the two relay nodes are combined to achieve spatial diversity and enhanced data reliability. The simulation results are presented to validate the performance of the proposed schemes.


2011 ◽  
Vol 59 (8) ◽  
pp. 2306-2315 ◽  
Author(s):  
Chuan Huang ◽  
Jinhua Jiang ◽  
Shuguang Cui

To understand the network response to large-scale physical attacks, we investigate the asymptotic capacity of a half-duplex fading relay network with random node failures when the number of relays N gets infinitely large. In this paper, a simplified independent attack model is assumed where each relay node fails with a certain probability. The noncoherent relaying scheme is considered, which corresponds to the case of zero forward-link channel state information (CSI) at the relays. Accordingly, the whole relay network can be shown equivalent to a Rayleigh fading channel, where we derive the ε-outage capacity upper bound according to the multiple access (MAC) cut-set, and the ε-outage achievable rates for both the amplify-and-forward (AF) and decode-and-forward (DF) strategies. Furthermore, we show that the DF strategy is asymptotically optimal as the outage probability ε goes to zero, with the AF strategy strictly suboptimal over all signal to noise ratio (SNR) regimes. Regarding the rate loss due to random attacks, the AF strategy suffers a less portion of rate loss than the DF strategy in the high SNR regime, while the DF strategy demonstrates more robust performance in the low SNR regime.


Sign in / Sign up

Export Citation Format

Share Document