scholarly journals On the Coverage Extension and Capacity Enhancement of Inband Relay Deployments in LTE-Advanced Networks

2010 ◽  
Vol 2010 ◽  
pp. 1-12 ◽  
Author(s):  
Abdallah Bou Saleh ◽  
Simone Redana ◽  
Jyri Hämäläinen ◽  
Bernhard Raaf

Decode-and-forward relaying is a promising enhancement to existing radio access networks and is currently being standardized in 3GPP to be part of the LTE-Advanced release 10. Two inband operation modes of relay nodes are to be supported, namely Type 1 and Type 1b. Relay nodes promise to offer considerable gain for system capacity or coverage depending on the deployment prioritization. However, the performance of relays, as any other radio access point, significantly depends on the propagation characteristics of the deployment environment. Hence, in this paper, we investigate the performance of Type 1 and Type 1b inband relaying within the LTE-Advanced framework in different propagation scenarios in terms of both coverage extension capabilities and capacity enhancements. A comparison between Type 1 and Type 1b relay nodes is as well presented to study the effect of the relaying overhead on the system performance in inband relay node deployments. System level simulations show that Type 1 and Type 1b inband relay deployments offer low to very high gains depending on the deployment environment. As well, it is shown that the effect of the relaying overhead is minimal on coverage extension whereas it is more evident on system throughput.

Author(s):  
Chong Shen ◽  
Dirk Pesch ◽  
Robert Atkinson ◽  
Wencai Du

The objective of the Hybrid Wireless Network with dedicated Relay Nodes (HWN*) proposal is to interface the Base Station (BS) Oriented Mobile Network (BSON) and the 802.11X assisted Mobile Ad hoc Wireless Network (MANET) so that one system can be utilised as an alternative radio access network for data transmissions, while the incorporation of the Relay Node (RN) is to extend the communication coverage, optimise medium resource sharing, increase spatial reuse opportunity, stabilise MANET link and create more micro-cells. The HWN* keeps the existing cellular infrastructure and a end-user Mobile Terminal (MT) can borrow radio resources from other cells through secured multi-hop RN relaying, where RNs are placed at pre-engineered locations. The main contribution of this work is the development of a HWN* system framework and related medium access and routing protocols/algorithms. The framework dedicatedly addresses the transparent multiple interface traffic handover management, cross layer routing, RN positioning and network topology issues to increase communication system capacity, improve Quality of Service (QoS), optimise transmission delay and reduce packet delivery delay.


2015 ◽  
Vol 2015 ◽  
pp. 1-7 ◽  
Author(s):  
Haiyong Wang ◽  
Geng Yang ◽  
Yiran Gu ◽  
Jian Xu ◽  
Zhixin Sun

In wireless sensor networks, cooperative communication can combat the effects of channel fading by exploiting diversity gain achieved via cooperation communication among the relay nodes. A cooperative automatic retransmission request (ARQ) protocol based on two-relay node selection was proposed in this paper. A novel discrete time Markov chain model in order to analyze the throughput and energy efficiency was built, and system throughput and energy efficiency performance of proposed protocol and traditional ARQ protocol were studied based on such model. The numerical results reveal that the throughput and energy efficiency of the proposed protocol could perform better when compared with the traditional ARQ protocol.


Energies ◽  
2021 ◽  
Vol 14 (4) ◽  
pp. 937
Author(s):  
Sangku Lee ◽  
Janghyuk Youn ◽  
Bang Chul Jung

For the next generation of manufacturing, the industrial internet of things (IoT) has been considered as a key technology that enables smart factories, in which sensors transfer measured data, actuators are controlled, and systems are connected wirelessly. In particular, the wireless sensor network (WSN) needs to operate with low cost, low power (energy), and narrow spectrum, which are the most technical challenges for industrial IoT networks. In general, a relay-assisted communication network has been known to overcome scarce energy problems, and a spectrum-sharing technique has been considered as a promising technique for the radio spectrum shortage problem. In this paper, we propose a phase steering based hybrid cooperative relaying (PSHCR) technique for the generic relay-assisted spectrum-shared WSN, which consists of a secondary transmitter, multiple secondary relays (SRs), a secondary access point, and multiple primary access points. Basically, SRs in the proposed PSHCR technique operate with decode-and-forward (DF) relaying protocol, but it does not abandon the SRs that failed in decoding at the first hop. Instead, the SRs operate with amplify-and-forward (AF) protocol when they failed in decoding at the first hop. Furthermore, the SRs (regardless of operating with AF or DF protocol) that satisfy interference constraints to the primary network are allowed to transmit a signal to the secondary access point at the second hop. Note that phase distortion is compensated through phase steering operation at each relay node before second-hop transmission, and thus all relay nodes can operate in a fully distributed manner. Finally, we validate that the proposed PSHCR technique significantly outperforms the existing best single relay selection (BSR) technique and cooperative phase steering (CPS) technique in terms of outage performance via extensive computer simulations.


2021 ◽  
Author(s):  
Binod Prasad ◽  
Gopal Chandra Das ◽  
Srinivas Nallagonda ◽  
Seemanti Saha ◽  
Abhijit Bhowmick

Abstract The performance of a relay based Half-Duplex (HD) and Full-Duplex (FD) cooperative cognitive radio (CR) network with a RF energy harvesting (EH) is studied in this paper. Co-operative environment includes a network with multiple primary users (PUs), and CRs. The relay node is considered as an EH node which harvests energy (HE) from RF signal (RFS) of source and loop-back interference. The network performance is studied for instantaneous transmission and delay constraint transmission for decode and forward (DF) relaying protocol. The performance is investigated under a relay energy outage constraint and the expression of throughput is redesigned. Expressions of energy outage, data outage and throughput for HD and FD are developed. The impact of several parameters such as transmitting SNR, fractional harvesting time parameter, fractional transmission time parameter, and loop-back interference on the system throughput has been investigated.


2013 ◽  
Vol 2013 ◽  
pp. 1-9 ◽  
Author(s):  
Cheng-Chung Lin ◽  
Kumbesan Sandrasegaran ◽  
Xinning Zhu ◽  
Zhuliang Xu

Coordinated multipoint (CoMP) transmission and reception is the key technique in LTE-Advanced to improve the cell-edge throughput and/or system throughput. Joint processing (JP) in CoMP technology provides multiple data transmission points for each user among multiple cooperated radio base stations. Hard handover mechanism is adopted to be used in LTE-Advanced. Standard hard handover algorithm could not satisfy the concept of JP in CoMP in LTE-A due to the constraint of single connection for each user at any time. While the radio resources in the system are fixed, the more multiple data connections a user has, the more radio resources are used for the extra data connections, thus the lower capacity a system becomes. Therefore a new handover algorithm that not only supports JP in CoMP but also takes system capacity into consideration in LTE-A system is necessary. This paper proposes a new handover algorithm known as Limited CoMP Handover Algorithm to support JP in CoMP and overcome the system capacity issue. System performance of Limited CoMP Handover Algorithm is evaluated and compared with open literature handover algorithm via simulation in this paper. The simulation results show that Limited CoMP Handover Algorithm outperforms open literature handover algorithm by having shorter system delay and less system load whilst maintaining a higher system throughput in a high congested network.


2015 ◽  
Vol 16 (12) ◽  
pp. 1526-1536 ◽  
Author(s):  
Fan-Hsun Tseng ◽  
Li-Der Chou ◽  
Han-Chieh Chao

Author(s):  
Issam Maaz ◽  
Jean-Marc Conrat ◽  
Jean-Christophe Cousin ◽  
Samer Alabed

<span>This paper compares the performance of a relay assisted network to the performance given by a classical macrocell network without the presence of relay node schemes. The capacity enhancement provided by a relaying system as a function of the relay antenna height and the propagation environment surrounding the relay nodes is analyzed and discussed in details. The analysis in this work is based on the theoretical Shannon capacity where both measured/experimental path loss and calibrated path loss models are taken into consideration. In this work, we assume a decode and forward scheme, a full-duplex relaying protocol and an optimized relay location is investigated. A 30 % of improvement in the macrocell capacity is achieved with the usage of relaying scenario compared to a classical macrocell network. Furthermore, increasing the relay antenna height from 4 meters to 12 meters can significantly increase the relay capacity to more than 20 % in suburban and moderate urban environments.</span>


Sensors ◽  
2020 ◽  
Vol 20 (16) ◽  
pp. 4534
Author(s):  
Thu L. N. Nguyen ◽  
Jin-Young Kim ◽  
Yoan Shin

Since radio frequency (RF) signals can be used for both information transmission and energy harvesting, RF-based energy harvesting is capable of integrating with other existing communication techniques for providing better rate–energy tradeoff and quality-of-service. Within the context of an RF-based energy harvesting relaying network, a relay node not only acts as an intermediate node to help the delivery from source to destination, but also harvests energy from an RF dedicated source to prolong its lifetime. Thus, it brings diversity gain and coverage extension as well as provides extra energy for data transmission. This paper investigates a system that enables ambient backscattering communication-assisted simultaneous wireless information and power transfer at the relay. In the proposed system, a backscatter device plays a role as a relay to meet sustainable network coverage and to harvest ambient energy as well. With a power splitting (PS) scheme, we first investigate a nonlinear energy harvesting model at the relay node. In order to adapt to the channel gains, a dynamic PS ratio is required to perform well in changing environments. Moreover, we derive mathematical expressions for the outage probability and the achievable system throughput. Numerical results show the effects of various system parameters on the outage probability and the system throughput performance.


Author(s):  
Rehana Kausar ◽  
Yue Chen ◽  
Michael Chai

In this chapter, an intelligent scheduling architecture is presented for the downlink transmission of LTE-Advanced networks to enhance the Quality of Service (QoS) provision to different traffic types while maintaining system level performance such as system throughput and fairness. Hebbian learning process and K-mean clustering algorithm are integrated in the time domain of the proposed scheduling architecture to intelligently allocate the available radio resource to Real Time (RT) and Non-Real Time (NRT) traffic types. The integration of these algorithms allows just enough resource allocation to RT traffic and diverts the remaining resource to NRT traffic to fulfil its minimum throughput requirements. System level simulation is set up for the performance evaluation, and simulation results show that the proposed scheduling architecture reduces average delay, delay violation probability, and average Packet Drop Rate (PDR) of RT traffic while guaranteeing the support of minimum throughput to NRT traffic and maintaining system throughput at good level.


2020 ◽  
Vol 8 (5) ◽  
pp. 5017-5023

The objective of this paper is to analyse and optimize the performance parameters of Relay nodes used in the finite block length (FBL) regime. A relaying system with a single Decode and Forward (DF) Relay is used for this purpose. Here using FBL, the performance parameters like coding rate, decoding error probability etc are obtained for different scenarios like without relay, with relay and using cooperative relaying. Effects of SNR and code Block length on performance parameters are analyzed. To enhance the performance of the Relay in URLLC scenario, power distribution between source and Relay node is optimized using evolutionary algorithms such as Multi-Objective Particle Swarm Optimization (MOPSO) and Infeasibility Driven Evolutionary Algorithm (IDEA). Low error probability and high throughput at the desired block length and power were the optimization goals. After using both the algorithms, the optimized Relay has shown improvement in performances like throughput (coding rate) and decoding error probability. It is also observed that IDEA optimization approach is found to be more efficient than MOPSO to provide optimum design parameters.


Sign in / Sign up

Export Citation Format

Share Document