scholarly journals Effects of Soil Profile on the Transient Performance of Substation Grounding System

Author(s):  
Zulkurnain Adul Malek ◽  
Mohammad Shahrin Affendy Yaman ◽  
Muhammad Adnan

<table width="593" border="1" cellspacing="0" cellpadding="0"><tbody><tr><td valign="top" width="387"><p>Lightning transient characteristic of the grounding grid is fundamental for optimum performance of lightning protection of a substation. In order to design an appropriate grounding system for such substation, it is important to study its transient characteristics because the high impulse current is significantly different compared to power frequency current. In this paper, substation grounding grid model was developed using CDEGS software to analyze the grid transient performance in terms of ground potential rise (GPR), touch voltage and step voltage when the grounding system is struck by a lightning impulse current. Several parameters, such as lightning current amplitude, feed point and the number of sub-grids, were altered to study their relationship with the transient performance. The maximum transient GPR, touch voltage, and step voltage increase as the lightning current amplitude increase. The maximum transient GPR and step voltage are the highest at the corner of the grounding grid while the maximum touch voltage is the highest at the centre of the grounding grid. In addition, the maximum transient GPR and step voltage decrease when the number of sub-grid increases. In contrast, the touch voltage slightly increases as the number of sub-grid increases. The maximum transient GPR, and step voltage are the highest at the 2-layer and the lowest at the uniform soil or single-layer soil.</p></td></tr></tbody></table>

Author(s):  
Muhammad Adnan ◽  
Zulkurnain Adul Malek ◽  
Nur Syazwani Mohd Din ◽  
Muhammad Irfan Jambak ◽  
Zainuddin Nawawi ◽  
...  

<table width="593" border="1" cellspacing="0" cellpadding="0"><tbody><tr><td valign="top" width="387"><p>The role of the grounding system in the safety of the power system and protection of personnel is obvious during an unexpected short circuit or lightning discharge at the substation. The aim of this work is to analyze the effects of several parameters: lightning impulse front time, soil resistivity and types of grid materials on the grounding system of the Substation. The ground potential rise (GPR), touch voltage and step voltage of a 50 m x 60 m grounding grid buried at a depth of 0.5 m were computed using CDEGS when injected by impulse with different front times. Results show that the shorter the front time of lightning impulse waveform, the higher the value of GPR, touch voltage and step voltage. Meanwhile, when the value of soil resistivity is increased, the value of GPR, touch voltage and step voltage is also increased. Lastly, different types of grid conductor materials give different values of GPR, touch voltage and step voltage. However, it can be said that the differences are too small to be of any significance.</p><p> </p></td></tr></tbody></table>


Energies ◽  
2018 ◽  
Vol 11 (12) ◽  
pp. 3484 ◽  
Author(s):  
Jau-Woei Perng ◽  
Yi-Chang Kuo ◽  
Shih-Pin Lu

In this study, the concept of grounding systems is related to the voltage tolerance of the human body (human body voltage tolerance safety value). The maximum touch voltage target and grounding resistance values are calculated in order to compute the grounding resistance on the basis of system data. Typically, the grounding resistance value is inversely proportional to the laying depth of the grounding grid and the number of grounded copper rods. In other words, to improve the performance of the grounding system, either the layering depth of the grounding grid or the number of grounded copper rods should be increased, or both of them should be simultaneously increased. Better grounding resistance values result in increased engineering costs. There are numerous solutions for the grounding target value. Grounding systems are designed to find the combination of the layering depth of the grounding grid and the number of grounded copper rods by considering both cost and performance. In this study, we used a fuzzy algorithm on the genetic algorithm (GA), multi-objective particle swarm optimization (MOPSO) algorithm, Bees, IEEE Std. 80-2000, and Schwarz’s equation based on a power company’s substation grounding system data to optimize the grounding resistance performance and reduce system costs. The MOPSO algorithm returned optimal results. The radial basis function (RBF) neural network curve is obtained by the MOPSO algorithm with three variables (i.e., number of grounded copper rods, grounding resistance value, and grounding grid laying depth), and the simulation results of the electrical transient analysis program (ETAP) system are verified. This could be a future reference for substation designers and architects.


2019 ◽  
Vol 58 ◽  
pp. 139-150
Author(s):  
Isaias Ramirez-Vazquez ◽  
Miguel Ramirez-Gonzalez ◽  
J. Eduardo Salgado-Talavera

For many high voltage transmission lines, lightning is the first cause of outages. Different alternatives have been used to diminish these outages, like the use of counterpoise wires, installation of surge arresters, and the improvement of the grounding system using ground enhancers or chemical enhancers. In this paper, graphene nanoparticles were used to reformulate commercial ground enhancers. The results of this research end up in an improvement factor of up to 100 times the reduction in resistivity, when graphene nanoparticles are used. After lightning current impulse tests done on both types of samples, the performance of the un-reformulated ground enhancer samples shows a faster deterioration than the graphene reinforced ground enhancer samples. In order to establish a criterion to quantitatively rank the chemical ground enhancers ́ performance after the lightning impulse current tests, a neural network model was developed.


Grounding studies allow an optimized design of grounding system to provide protection for electrical components and personnel at substation. The design of grounding system needs to comply with IEEE Standard 80:2013. Field work is conducted with Fall-of-Potential method and Wenner’s method to perform measurement soil test. Data from measurement test is used to develop two-layer soil model by using Sunde’s graphical method. Calculation for tolerable step voltage and touch voltage are under 50kg body weight condition. Based on the findings, calculated values for tolerable step voltage and touch voltage are higher than calculated values for mesh voltage and touch voltage. The percentage of error is 7% when computed values and calculated values for tolerable voltages are compared. Higher tolerable voltages minimise the risk of getting electrical shock to any individual presents at substation during fault or lightning strike occurs. However, there is limitation in this paper related to software licensing where full simulation with grounding software required full access.


2021 ◽  
Vol 1 (1) ◽  
pp. 8-12
Author(s):  
Sherif Ghoneim ◽  
Ahdab Elmorshedy ◽  
Rabah Amer

Investigating the transient performance of grounding systems subject to lightning (impulse or impulse superimposed sinewave) is valuable for protecting the power system and maintaining the system operation. In this work, the grounding system's impedance is computed when an impulse superimposed sinewave is applied to the grounding grid's proposed lumped circuit and grounding system can be simulated as an inductance in series with resistance, and all of them are in parallel with capacitance based on Thione's assumption. Several variables were investigated to study their effects on the grounding system's behavior. The variables were the soil resistivity, soil permittivity, main wire length, grid conductor radius, grid side length, grid configurationand its mesh number. The grounding system configuration  varied between square and rectangular shapes, which connects to the protecting rod via the main wire conductor. A 3.69 kA peak of impulse current was applied to avoid soil ionization. The results indicated the performance of the grounding system when subjecting to impulse current.


Tehnika ◽  
2021 ◽  
Vol 76 (4) ◽  
pp. 467-472
Author(s):  
Vojin Kostić

In this paper, practical and conceptual problems related to the way of suppressing or eliminating the influence of interference (at a frequency of 50 Hz) in an active high-voltage power facility are discussed. The problem is relevant in the context of measuring the safety characteristics of the grounding system: grounding system impedance, touch voltage and step voltage. The paper gives an evolutionary overview of title methods. The review focuses on the characteristic problems and shortcomings of individual methods. Also, the basic characteristics of the author's FSM (Frequency Shift Method) method, which guarantees precise control of interference, are elaborated. In this sense, the FSM method is the basis for accurate and economical measurement of the safety characteristics of the grounding system.


2017 ◽  
Vol 2 (2) ◽  
pp. 11
Author(s):  
Carlos L. B. Silva ◽  
Thyago G. Pires ◽  
Wesley P. Calixto ◽  
Diogo N. Oliveira ◽  
Luis A. P. Souza ◽  
...  

This paper deals with the computation of ground resistance, surface voltage, touch voltage and step voltage, to mesh with horizontal wires arranged in different angles. The computer program implemented used in the mathematical modeling is based on the method proposed by Heppe, which allows obtaining the grounding parameters for homogeneous soil and soil stratified in two layers. The results obtained with the proposed method will be compared with other methods in literature. Also will be presented the results of a grounding grid using wires at various angles.


2019 ◽  
Vol 6 (1) ◽  
pp. 140
Author(s):  
Kadek Mirah Mahadewi ◽  
I Gusti Ngurah Janardana ◽  
I Wayan Arta Wijaya

I Gusti Ngurah Rai International Airport Bali previously had a Substation (SS) D which serves the electrical system for the operation of modified Sewage Treatment Plant, however that substation currently under development with the construction of SS VVIP which serves the electrical system for the operation of VVIP buildings and Sewage Treatment Plant. To maintain the security of equipment and humans around the SS VVIP building a good grounding system is needed with a grounding resistance value of <1 Ohm. Because the land at Ngurah Rai Airport is sandy land, the suitable grounding systems are Pelat, Mesh, Grid-Rod groundinh systems [1]. To get an R value <1 Ohm, an analysis of each grounding system is needed, namely Pelat, Mesh, Grid-Rod.The results of the analysis showed that the safest system was the Grid-Rod grounding system with a grounding resistance value of 0.3718 Ohm, a touch voltage value of 223.51 Volt, a step voltage value of 1188.69 Volt and a planning cost of Rp7,712,500. Based on the construction planning data of the SS VVIP Ngurah Rai Airport, the grounding system used is the same as the result of the analysis of the Grid - Rod grounding system.


Sign in / Sign up

Export Citation Format

Share Document