scholarly journals Semantic feature extraction method for hyperspectral crop classification

Author(s):  
M. C. Girish Baabu ◽  
Padma M. C.

<span>Hyperspectral imaging (HSI) is composed of several hundred of narrow bands (NB) with high spectral correlation and is widely used in crop classification; thus induces time and space complexity, resulting in high computational overhead and Hughes phenomenon in processing these images. Dimensional reduction technique such as band selection and feature extraction plays an important part in enhancing performance of hyperspectral image classification. However, existing method are not efficient when put forth in noisy and mixed pixel environment with dynamic illumination and climatic condition. Here the proposed Sematic Feature Representation based HSI (SFR-HSI) crop classification method first employ Image Fusion (IF) method for finding meaningful features from raw HSI spectrally. Second, to extract inherent features that keeps spatially meaningful representation of different crops by eliminating shading elements. Then, the meaningful feature set are used for training using Support vector machine (SVM). Experiment outcome shows proposed HSI crop classification model achieves much better accuracies and Kappa coefficient performance. </span>

Crop identification (CI) utilizing hyperspectral pictures/images (HSI) collected from satellite is one of the effective research area considering various agriculture related applications. Wide range of research activity is carried out and modelled in the area of crop recognition (CR) for building efficient model. Correlation filter (CF) is considered to be one of an effective method and are been applied by existing methodologies for identifying similar signal features. Nonetheless, very limited is work is carried out using CF for crop classification using hyperspectral data. Further, effective method is required that bring good tradeoffs between memory and computational overhead. The crop classification model can be improved by combining machine learning (ML) technique with CF. HSI is composed of hundreds of channels with large data dimension that gives entire information of imaging. Thus, using classification model is very useful for real-time application uses. However, the accuracy of classification task is affected as HSI is composed of high number of redundant and correlated feature sets. Along with, induce computational overhead with less benefits using redundant features. Thus, effective band selection, texture analysis, and classification method is required for accurately classifying multiple crops. This paper analyses various existing techniques for identification and classification of crops using satellite imagery detection method. Then, identify the research issues, challenges, and problems of existing model for building efficient techniques for identification and classification of crops using satellite image. Experiment are conducted on standard hyperspectral data. The result attained shows proposed model attain superior classification accuracy when compared with existing hyperspectral image classification model.


Author(s):  
Htwe Pa Pa Win ◽  
Phyo Thu Thu Khine ◽  
Khin Nwe Ni Tun

This paper proposes a new feature extraction method for off-line recognition of Myanmar printed documents. One of the most important factors to achieve high recognition performance in Optical Character Recognition (OCR) system is the selection of the feature extraction methods. Different types of existing OCR systems used various feature extraction methods because of the diversity of the scripts’ natures. One major contribution of the work in this paper is the design of logically rigorous coding based features. To show the effectiveness of the proposed method, this paper assumed the documents are successfully segmented into characters and extracted features from these isolated Myanmar characters. These features are extracted using structural analysis of the Myanmar scripts. The experimental results have been carried out using the Support Vector Machine (SVM) classifier and compare the pervious proposed feature extraction method.


2018 ◽  
Vol 10 (7) ◽  
pp. 1123 ◽  
Author(s):  
Yuhang Zhang ◽  
Hao Sun ◽  
Jiawei Zuo ◽  
Hongqi Wang ◽  
Guangluan Xu ◽  
...  

Aircraft type recognition plays an important role in remote sensing image interpretation. Traditional methods suffer from bad generalization performance, while deep learning methods require large amounts of data with type labels, which are quite expensive and time-consuming to obtain. To overcome the aforementioned problems, in this paper, we propose an aircraft type recognition framework based on conditional generative adversarial networks (GANs). First, we design a new method to precisely detect aircrafts’ keypoints, which are used to generate aircraft masks and locate the positions of the aircrafts. Second, a conditional GAN with a region of interest (ROI)-weighted loss function is trained on unlabeled aircraft images and their corresponding masks. Third, an ROI feature extraction method is carefully designed to extract multi-scale features from the GAN in the regions of aircrafts. After that, a linear support vector machine (SVM) classifier is adopted to classify each sample using their features. Benefiting from the GAN, we can learn features which are strong enough to represent aircrafts based on a large unlabeled dataset. Additionally, the ROI-weighted loss function and the ROI feature extraction method make the features more related to the aircrafts rather than the background, which improves the quality of features and increases the recognition accuracy significantly. Thorough experiments were conducted on a challenging dataset, and the results prove the effectiveness of the proposed aircraft type recognition framework.


2012 ◽  
Vol 572 ◽  
pp. 25-30
Author(s):  
Li Jing Han ◽  
Jian Hong Yang ◽  
Min Lin ◽  
Jin Wu Xu

Hot strip tail flick is an abnormal production phenomenon, which brings many damages. To recognize the tail flick signals from all throwing steel strip signals, a feature extraction method based on morphological pattern spectrum is proposed in this paper. The area between signal curves after multiscale opening operation and the horizontal axis is computed as the pattern spectrum value and it reflects the geometric information differences. Then, support vector machine is used as the classifier. Experimental results show that the total correct rate based on pattern spectrum feature reached 96.5%. Compared with wavelet packet energy feature, the total correct rate is 92.1%. So, the feasibility and availability of this new feature extraction method are verified.


Sensor Review ◽  
2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Rabeb Faleh ◽  
Sami Gomri ◽  
Khalifa Aguir ◽  
Abdennaceur Kachouri

Purpose The purpose of this paper is to deal with the classification improvement of pollutant using WO3 gases sensors. To evaluate the discrimination capacity, some experiments were achieved using three gases: ozone, ethanol, acetone and a mixture of ozone and ethanol via four WO3 sensors. Design/methodology/approach To improve the classification accuracy and enhance selectivity, some combined features that were configured through the principal component analysis were used. First, evaluate the discrimination capacity; some experiments were performed using three gases: ozone, ethanol, acetone and a mixture of ozone and ethanol, via four WO3 sensors. To this end, three features that are derivate, integral and the time corresponding to the peak derivate have been extracted from each transient sensor response according to four WO3 gas sensors used. Then these extracted parameters were used in a combined array. Findings The results show that the proposed feature extraction method could extract robust information. The Extreme Learning Machine (ELM) was used to identify the studied gases. In addition, ELM was compared with the Support Vector Machine (SVM). The experimental results prove the superiority of the combined features method in our E-nose application, as this method achieves the highest classification rate of 90% using the ELM and 93.03% using the SVM based on Radial Basis Kernel Function SVM-RBF. Originality/value Combined features have been configured from transient response to improve the classification accuracy. The achieved results show that the proposed feature extraction method could extract robust information. The ELM and SVM were used to identify the studied gases.


Selection of feature extraction method is incredibly recondite task in Content Based Image Retrieval (CBIR). In this paper, CBIR is implemented using collaboration of color; texture and shape attribute to improve the feature discriminating property. The implementation is divided in to three steps such as preprocessing, features extraction, classification. We have proposed color histogram features for color feature extraction, Local Binary Pattern (LBP) for texture feature extraction, and Histogram of oriented gradients (HOG) for shape attribute extraction. For the classification support vector machine classifier is applied. Experimental results show that combination of all three features outperforms the individual feature or combination of two feature extraction techniques


Sign in / Sign up

Export Citation Format

Share Document