scholarly journals A Efficient Solution for Classification of Crops using Hyper Spectral Satellite Images

Crop identification (CI) utilizing hyperspectral pictures/images (HSI) collected from satellite is one of the effective research area considering various agriculture related applications. Wide range of research activity is carried out and modelled in the area of crop recognition (CR) for building efficient model. Correlation filter (CF) is considered to be one of an effective method and are been applied by existing methodologies for identifying similar signal features. Nonetheless, very limited is work is carried out using CF for crop classification using hyperspectral data. Further, effective method is required that bring good tradeoffs between memory and computational overhead. The crop classification model can be improved by combining machine learning (ML) technique with CF. HSI is composed of hundreds of channels with large data dimension that gives entire information of imaging. Thus, using classification model is very useful for real-time application uses. However, the accuracy of classification task is affected as HSI is composed of high number of redundant and correlated feature sets. Along with, induce computational overhead with less benefits using redundant features. Thus, effective band selection, texture analysis, and classification method is required for accurately classifying multiple crops. This paper analyses various existing techniques for identification and classification of crops using satellite imagery detection method. Then, identify the research issues, challenges, and problems of existing model for building efficient techniques for identification and classification of crops using satellite image. Experiment are conducted on standard hyperspectral data. The result attained shows proposed model attain superior classification accuracy when compared with existing hyperspectral image classification model.

Author(s):  
M. C. Girish Baabu ◽  
Padma M. C.

<span>Hyperspectral imaging (HSI) is composed of several hundred of narrow bands (NB) with high spectral correlation and is widely used in crop classification; thus induces time and space complexity, resulting in high computational overhead and Hughes phenomenon in processing these images. Dimensional reduction technique such as band selection and feature extraction plays an important part in enhancing performance of hyperspectral image classification. However, existing method are not efficient when put forth in noisy and mixed pixel environment with dynamic illumination and climatic condition. Here the proposed Sematic Feature Representation based HSI (SFR-HSI) crop classification method first employ Image Fusion (IF) method for finding meaningful features from raw HSI spectrally. Second, to extract inherent features that keeps spatially meaningful representation of different crops by eliminating shading elements. Then, the meaningful feature set are used for training using Support vector machine (SVM). Experiment outcome shows proposed HSI crop classification model achieves much better accuracies and Kappa coefficient performance. </span>


Computers ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 82
Author(s):  
Ahmad O. Aseeri

Deep Learning-based methods have emerged to be one of the most effective and practical solutions in a wide range of medical problems, including the diagnosis of cardiac arrhythmias. A critical step to a precocious diagnosis in many heart dysfunctions diseases starts with the accurate detection and classification of cardiac arrhythmias, which can be achieved via electrocardiograms (ECGs). Motivated by the desire to enhance conventional clinical methods in diagnosing cardiac arrhythmias, we introduce an uncertainty-aware deep learning-based predictive model design for accurate large-scale classification of cardiac arrhythmias successfully trained and evaluated using three benchmark medical datasets. In addition, considering that the quantification of uncertainty estimates is vital for clinical decision-making, our method incorporates a probabilistic approach to capture the model’s uncertainty using a Bayesian-based approximation method without introducing additional parameters or significant changes to the network’s architecture. Although many arrhythmias classification solutions with various ECG feature engineering techniques have been reported in the literature, the introduced AI-based probabilistic-enabled method in this paper outperforms the results of existing methods in outstanding multiclass classification results that manifest F1 scores of 98.62% and 96.73% with (MIT-BIH) dataset of 20 annotations, and 99.23% and 96.94% with (INCART) dataset of eight annotations, and 97.25% and 96.73% with (BIDMC) dataset of six annotations, for the deep ensemble and probabilistic mode, respectively. We demonstrate our method’s high-performing and statistical reliability results in numerical experiments on the language modeling using the gating mechanism of Recurrent Neural Networks.


Author(s):  
W. Pervez ◽  
S. A. Khan ◽  
Valiuddin

Rapid advancement in remote sensing open new avenues to explore the hyperspectral Hyperion imagery pre-processing techniques, analysis and application for land use mapping. The hyperspectral data consists of 242 bands out of which 196 calibrated/useful bands are available for hyperspectral applications. Atmospheric correction applied to the hyperspectral calibrated bands make the data more useful for its further processing/ application. Principal component (PC) analysis applied to the hyperspectral calibrated bands reduced the dimensionality of the data and it is found that 99% of the data is held in first 10 PCs. Feature extraction is one of the important application by using vegetation delineation and normalized difference vegetation index. The machine learning classifiers uses the technique to identify the pixels having significant difference in the spectral signature which is very useful for classification of an image. Supervised machine learning classifier technique has been used for classification of hyperspectral image which resulted in overall efficiency of 86.6703 and Kappa co-efficient of 0.7998.


Author(s):  
C. Buehler ◽  
F. Schenkel ◽  
W. Gross ◽  
G. Schaab ◽  
W. Middelmann

Abstract. Hyperspectral data recorded by future earth observation satellites will have up to hundreds of narrow bands that cover a wide range of the electromagnetic spectrum. The spatial resolution (around 30 meters) of such data, however, can impede the integration of the spatial domain for a classification due to spectrally mixed pixels and blurred edges in the data. Hence, the ability of performing a meaningful classification only relying on spectral information is important. In this study, a model for the spectral classification of hyperspectral data is derived by strategically optimizing a convolutional neural network (1D-CNN). The model is pre-trained and optimized on imagery of different nuts, beans, peas and dried fruits recorded with the Cubert ButterflEye X2 sensor. Subsequently, airborne hyperspectral datasets (Greding, Indian Pines and Pavia University) are used to evaluate the CNN's capability of transfer learning. For that, the datasets are classified with the pre-trained weights and, for comparison, with the same model architecture but trained from scratch with random weights. The results show substantial differences in classification accuracies (from 71.8% to 99.8% overall accuracy) throughout the used datasets, mainly caused by variations in the number of training samples, the spectral separability of the classes as well as the existence of mixed pixels for one dataset. For the dataset that is classified least accurately, the greatest improvement with pre-training is achieved (difference of 3.3% in overall accuracy compared to the non-pre-trained model). For the dataset that is classified with the highest accuracy, no significant transfer learning was observed.


Sensors ◽  
2019 ◽  
Vol 19 (24) ◽  
pp. 5559
Author(s):  
Na Li ◽  
Ruihao Wang ◽  
Huijie Zhao ◽  
Mingcong Wang ◽  
Kewang Deng ◽  
...  

To solve the small sample size (SSS) problem in the classification of hyperspectral image, a novel classification method based on diverse density and sparse representation (NCM_DDSR) is proposed. In the proposed method, the dictionary atoms, which learned from the diverse density model, are used to solve the noise interference problems of spectral features, and an improved matching pursuit model is presented to obtain the sparse coefficients. Airborne hyperspectral data collected by the push-broom hyperspectral imager (PHI) and the airborne visible/infrared imaging spectrometer (AVIRIS) are applied to evaluate the performance of the proposed classification method. Results illuminate that the overall accuracies of the proposed model for classification of PHI and AVIRIS images are up to 91.59% and 92.83% respectively. In addition, the kappa coefficients are up to 0.897 and 0.91.


Complexity ◽  
2020 ◽  
Vol 2020 ◽  
pp. 1-17
Author(s):  
Cuijie Zhao ◽  
Hongdong Zhao ◽  
Guozhen Wang ◽  
Hong Chen

At present, the classification of the hyperspectral image (HSI) based on the deep convolutional network has made great progress. Due to the high dimensionality of spectral features, limited samples of ground truth, and high nonlinearity of hyperspectral data, effective classification of HSI based on deep convolutional neural networks is still difficult. This paper proposes a novel deep convolutional network structure, namely, a hybrid depth-separable residual network, for HSI classification, called HDSRN. The HDSRN model organically combines 3D CNN, 2D CNN, multiresidual network ROR, and depth-separable convolutions to extract deeper abstract features. On the one hand, due to the addition of multiresidual structures and skip connections, this model can alleviate the problem of over fitting, help the backpropagation of gradients, and extract features more fully. On the other hand, the depth-separable convolutions are used to learn the spatial feature, which reduces the computational cost and alleviates the decline in accuracy. Extensive experiments on the popular HSI benchmark datasets show that the performance of the proposed network is better than that of the existing prevalent methods.


Symmetry ◽  
2020 ◽  
Vol 12 (2) ◽  
pp. 277 ◽  
Author(s):  
Laura Bilius ◽  
Stefan Pentiuc

Hyperspectral images are becoming a valuable tool much used in agriculture, mineralogy, and so on. The challenge is to successfully classify the materials founded in the field relevant for different applications. Due to a large amount of data corresponding to a big number of spectral bands, the classification programs require a long time to analyze and classify the data. The purpose is to find a better method for reducing the classification time. We exploit various algorithms on real hyperspectral data sets to find out which algorithm is more effective. This paper presents a comparison of unsupervised hyperspectral image classification such as K-means, Hierarchical clustering, and Parafac decomposition, which allows the performance of the model reduction and feature extraction. The results showed that the method useful for big data is the classification of data after Parafac Decomposition.


Hyperspectral image compression using compressive sensing technique is very much important in the area of satellite image compression because it can greatly en hance the compression rate. The research work proposes a novel data adaptable sparse reconstruction algorithm for the reconstruction of hyperspectral images from compressive sensing measurements. In the proposed algorithm, compressive sensing technique is used for the compression of HSIs, where Gaussian i.i.d. matrix is used to generate compressive sensing measurements. The algorithm solves the optimization problem containing total variation regularization and data adaptable parameter terms. The regularization terms are added to provide hyperspectral data characteristics as priors into the objective function. The addition of priors helps in convergence of the algorithm into the desired solution. The algorithm alternatively reconstructs the end member matrix and abundance matrix instead of reconstructing the entire HSI at once, thereby reducing the computational complexity at the reconstruction process. To nullify the effect of modelling errors, debiasing is performed.


Sign in / Sign up

Export Citation Format

Share Document