A Miniaturized 878 MHz Slotted Meander Line Monopole Antenna

Author(s):  
Nabilah Ripin ◽  
Ahmad Asari Sulaiman ◽  
Nur Emileen Abd Rashid ◽  
Mohamad Fahmi Hussin ◽  
Nor Najwa Ismail

<p>A slotted meander line printed monopole antenna for low frequency applications at 878 MHz is presented. The operating frequency of the conventional printed monopole antenna was greatly reduced by the presence of the slots and meander line which lead to the reduction of the antenna size. The size reduction up to 70% compared to the conventional reference antenna is achieved in this study. The antenna has a simple structure and small antenna size of 46.8 mm x 74 mm or 0.137𝝀<sub>0</sub> x 0.217𝝀<sub>0</sub>. The antenna has been fabricated on the low-cost FR4 substrate and measured to validate the simulation performances. Measured results display that the proposed antenna produces omnidirectional radiation pattern of impedance bandwidth of 48.83 MHz and the maximum gain of -1.18 dBi.</p>

Author(s):  
Y. Gmih ◽  
Y. El Hachimi ◽  
M. Makroum ◽  
A. Fachi

<p><span>This paper displays a new design of a small antenna proposed for radio-frequency identification (RFID) applications in the UHF band (ultra-high frequency). Our antenna is constituted of two rectangular patches linked together with a meander line. Using this technique reduction in antenna size of equal to 62% with respect to the conventional antenna was achieved. The antenna has a simple structure and small antenna size of 60 x 74mm<sup>2</sup> or 0.184 <sub>λ0</sub> x 0.226 <sub>λ0</sub>. It has been fabricated on a low-cost FR4 substrate and measured to validate the simulation performances.</span><span>The measured bandwidth is around 54.4 MHz (889.3 - 943.7 MHz) with reflection coefficient less than 10 dB, which covers all of the American RFID band (902 - 928 MHz), Chinese RFID band (920.5 - 924.5 MHz), Korea Republic and Japan RFID band ( 917 - 923.5 MHz).</span><span>The design and simulations have been effected by electromagnetic simulators HFSS and CST microwave studio. A good accord is getting between the simulated and measured results. This antenna is intended for the reader of RFID applications.</span></p>


2015 ◽  
Vol 8 (8) ◽  
pp. 1231-1235 ◽  
Author(s):  
Sudeep Baudha ◽  
Dinesh Kumar Vishwakarma

This paper presents a compact broadband printed monopole antenna with U-shaped slit in the partial ground plane and rectangular parasitic patches adjacent to the microstrip line for multiple applications. The optimal dimensions of the proposed antenna are 35 × 25 × 1.5 mm3 and is fabricated on commercially available low-cost FR4 substrate with εr = 4.3 and 0.025 loss tangent. Due to introduction of rectangular parasitic patches and U-shaped slit large bandwidth has been achieved. The impedance bandwidth (return loss, magnitude of S11 < 10 dB) of the proposed antenna is 139% (2.9–16.3 GHz). The proposed antenna covers ultra wide band applications, 5.2/5.8 GHz WLAN bands, 3.5/5.5 GHz WiMAX bands, X band (8–12 GHz), satellite communication, and other wireless communication services. The study shows that there is good agreement in simulated and measured results. Nearly stable radiation patterns have been obtained throughout the operating band. Antenna results and details are discussed and elaborated.


2016 ◽  
Vol 9 (3) ◽  
pp. 665-673
Author(s):  
Jui-Han Lu ◽  
Ying-Sheng Fang

By introducing a modified F-shaped feeding strip and dual parasitic shorted strips, a small-size wireless wide area network/long-term evolution (WWAN/LTE) printed antenna is proposed and embedded in the 4 G mobile phone with octa-band operation. The operating impedance bandwidths (RL ≥ 6 dB) of 263/1093 MHz can be obtained across the LTE/WWAN bands, respectively. The overall antenna size of the proposed printed monopole antenna (MA) is only 35 × 10 × 0.8 mm3. Meanwhile, this small-size MA provides the measured peak gains and antenna efficiencies of 2.0/3.6 dBi and 80/75% for the LTE/WWAN bands, respectively.


2017 ◽  
Vol 23 (5) ◽  
pp. 3926-3929
Author(s):  
Nabilah Ripin ◽  
Ahmad Asari Sulaiman ◽  
Nur Emileen Abd Rashid ◽  
Mohamad Fahmi Hussin ◽  
Nor Najwa Ismail

2022 ◽  
Vol 12 (2) ◽  
pp. 821
Author(s):  
Sarosh Ahmad ◽  
Umer Ijaz ◽  
Salman Naseer ◽  
Adnan Ghaffar ◽  
Muhammad Awais Qasim ◽  
...  

A type of telecommunication technology called an ultra-wideband (UWB) is used to provide a typical solution for short-range wireless communication due to large bandwidth and low power consumption in transmission and reception. Printed monopole antennas are considered as a preferred platform for implementing this technology because of its alluring characteristics such as light weight, low cost, ease of fabrication, integration capability with other systems, etc. Therefore, a compact-sized ultra-wideband (UWB) printed monopole antenna with improved gain and efficiency is presented in this article. Computer simulation technology microwave studio (CSTMWS) software is used to build and analyze the proposed antenna design technique. This broadband printed monopole antenna contains a jug-shaped radiator fed by a coplanar waveguide (CPW) technique. The designed UWB antenna is fabricated on a low-cost FR-4 substrate with relative permittivity of 4.3, loss tangent of 0.025, and a standard height of 1.6 mm, sized at 25 mm × 22 mm × 1.6 mm, suitable for wireless communication system. The designed UWB antenna works with maximum gain (peak gain of 4.1 dB) across the whole UWB spectrum of 3–11 GHz. The results are simulated, measured, and debated in detail. Different parametric studies based on numerical simulations are involved to arrive at the optimal design through monitoring the effects of adding cuts on the performance of the proposed antennas. Therefore, these parametric studies are optimized to achieve maximum antenna bandwidth with relatively best gain. The proposed patch antenna shape is like a jug with a handle that offers greater bandwidth, good gain, higher efficiency, and compact size.


2019 ◽  
Vol 11 (7) ◽  
pp. 694-702
Author(s):  
Murli Manohar ◽  
Rakhesh Singh Kshetrimayum ◽  
Anup Kumar Gogoi

AbstractA low profile super-wideband polarization diversity printed monopole antenna with dual band-notched characteristics is presented the first time. The designed antenna comprises two arched shaped radiating elements with two triangular tapered microstrip feed lines (TTMFL) and two arched shaped partial ground planes, which covers an enormously wide impedance bandwidth (BW) from 1.2 to 25 GHz (ratio BW of 20.8:3) for reflection coefficient |S11| < −10 dB. To ensure the high port isolation (better than − 30 dB) between two feeding ports over the whole bands, two analogous antennas have been kept perpendicular to each other at a distance of 1 mm. In addition, the dual band-notched performance in wireless local area network (5–6 GHz) and X-band (7.2–8.5 GHz) is generated by employing a pair of open-circuited stubs (L-shaped stub and horizontal stub) to the TTMFL. Envelop correlation coefficient has been computed to study the polarization diversity performance. Finally, the proposed antenna was fabricated and tested successfully. Measured results indicate that the proposed antenna is an appropriate candidate for the polarization diversity applications. The proposed antenna has a compact size of 40 × 70 × 0.787 mm3, high isolation, and occupies a small space compared with the existing antennas.


Frequenz ◽  
2016 ◽  
Vol 70 (11-12) ◽  
Author(s):  
Mohammad Jakir Hossain ◽  
Mohammad Rashed Iqbal Faruque ◽  
Md. Moinul Islam ◽  
Mohammad Tariqul Islam ◽  
Md. Atiqur Rahman

AbstractIn this paper, a novel bird face microstrip printed monopole ultra-wideband (UWB) antenna is investigated. The proposed compact antenna consists of a ring-shaped with additional slot and slotted ground plane on FR4 material. The overall electrical dimension of the proposed antenna is 0.25 λ×0.36 λ×0.016 λ and is energized by microstrip feed line. The Computer Simulation Technology (CST) and the High Frequency Structural Simulator (HFSS) is applied in this analysis. The impedance bandwidth of the monopole antenna cover 3.1–12.3 GHz (9.2 GHz, BW) frequency range. The messurement displayed that the designed antenna achieved excellent gain and stable omnidirectional radiation patterns within the UWB. The maximum gain of 6.8 dBi and omnidirectional radiation pattern makes the proposed antenna that is suitable for UWB systems.


Author(s):  
Nor Afifah Borhan ◽  
Noor Asniza Murad

<p>Monopole antenna is widely used in many communication systems especially in broadcasting where omnidirectional pattern allow the 360-degree coverage. However, at low frequency the conventional design may require miniaturization to fit in versatile spaces. Thus, this paper discusses a low cost, compact CPW-fed curved meander line monopole antenna (MLMA) designed to operate at 0.9 GHz GSM band. The overall dimension is 25mm x 80mm. The antenna is well matched at required GSM band with the bandwidth from 0.88 GHz to 0.93 GHz. Comparison between the conventional MLMA and curved (MLMA) is made in term of return loss and gain. It was found that the curved MLMA has a better gain compared to the conventional MLMA which is 1.472 dB.</p>


Sign in / Sign up

Export Citation Format

Share Document