scholarly journals A Miniature RFID Antenna at UHF Band using Meander-Line Technique

Author(s):  
Y. Gmih ◽  
Y. El Hachimi ◽  
M. Makroum ◽  
A. Fachi

<p><span>This paper displays a new design of a small antenna proposed for radio-frequency identification (RFID) applications in the UHF band (ultra-high frequency). Our antenna is constituted of two rectangular patches linked together with a meander line. Using this technique reduction in antenna size of equal to 62% with respect to the conventional antenna was achieved. The antenna has a simple structure and small antenna size of 60 x 74mm<sup>2</sup> or 0.184 <sub>λ0</sub> x 0.226 <sub>λ0</sub>. It has been fabricated on a low-cost FR4 substrate and measured to validate the simulation performances.</span><span>The measured bandwidth is around 54.4 MHz (889.3 - 943.7 MHz) with reflection coefficient less than 10 dB, which covers all of the American RFID band (902 - 928 MHz), Chinese RFID band (920.5 - 924.5 MHz), Korea Republic and Japan RFID band ( 917 - 923.5 MHz).</span><span>The design and simulations have been effected by electromagnetic simulators HFSS and CST microwave studio. A good accord is getting between the simulated and measured results. This antenna is intended for the reader of RFID applications.</span></p>

Author(s):  
Nabilah Ripin ◽  
Ahmad Asari Sulaiman ◽  
Nur Emileen Abd Rashid ◽  
Mohamad Fahmi Hussin ◽  
Nor Najwa Ismail

<p>A slotted meander line printed monopole antenna for low frequency applications at 878 MHz is presented. The operating frequency of the conventional printed monopole antenna was greatly reduced by the presence of the slots and meander line which lead to the reduction of the antenna size. The size reduction up to 70% compared to the conventional reference antenna is achieved in this study. The antenna has a simple structure and small antenna size of 46.8 mm x 74 mm or 0.137𝝀<sub>0</sub> x 0.217𝝀<sub>0</sub>. The antenna has been fabricated on the low-cost FR4 substrate and measured to validate the simulation performances. Measured results display that the proposed antenna produces omnidirectional radiation pattern of impedance bandwidth of 48.83 MHz and the maximum gain of -1.18 dBi.</p>


2014 ◽  
Vol 697 ◽  
pp. 425-428
Author(s):  
Yan Zhong Yu ◽  
Yun Yan Wang ◽  
Yan Ru Chen

A miniaturized circularly polarized (CP) antenna for ultra-high frequency (UHF) radio-frequency identification (RFID) reader is designed in the present paper. For the aim of miniaturizing antenna, the square radiating patch is opened by four T-shape slots. This can extend the route of surface current, as a result the operating frequency drops and the size reduces. In additional two diagonal corners of the radiation patch are truncated by a square to achieve CP operation. The designed antenna is calculated and optimized by HFSS. The optimized antenna exhibits satisfied performances, and is therefore suitable for UHF RFID reader applications. The designed antenna shows the advantages of small size, simple structure, and low cost.


2012 ◽  
Vol 236-237 ◽  
pp. 970-975
Author(s):  
Qian Cao ◽  
Jian Xiong Li ◽  
Lu Hong Mao

The growing interest of Radio Frequency Identification (RFID) applications has seen problems emerging in the identification of object, especially those that contain conductive material. A low-cost novel tag antenna for a RFID tag which could be mounted on the side of cigarette carton is proposed in this paper. Since the cigarette carton contains conductive material, radiation properties of the antenna could be affected significantly. The specific parameters of the antenna were optimized based on the Finite Element Method (FEM). The performance of the tag antenna design affixed to the cigarette carton containing metallic foil is verified with read range measurements. The proposed antenna has a simulated bandwidth from 863 MHz to 943 MHz ( < -10 dB) for conjugate-matching with a commercial tag chip.


2015 ◽  
Vol 2 (2) ◽  
pp. 86-96 ◽  
Author(s):  
M. Zomorrodi ◽  
N.C. Karmakar

The electromagnetic (EM) imaging technique at mm-band 60 GHz is proposed for data encoding purpose in the chipless Radio Frequency Identification (RFID) systems. The fully printable chipless RFID tag comprises tiny conductive EM polarizers to create high cross-polar radar cross-section. Synthetic aperture radar approach is applied for formation of the tag's EM-image and revealing the tag's content. The achieved high data encoding capacity of 2 bits/cm2in this technique based on a fully printable tag is very convincing for many applications. The system immunity to multipath interference, bending effect, and printing inaccuracy suggests huge potentials for low-cost item tagging. Tags are also readable through a tick paper envelop; hence secure identification is provided by the proposed technique.


Sensor Review ◽  
2017 ◽  
Vol 37 (3) ◽  
pp. 338-345 ◽  
Author(s):  
Yawei Xu ◽  
Lihong Dong ◽  
Haidou Wang ◽  
Jiannong Jing ◽  
Yongxiang Lu

Purpose Radio frequency identification tags for passive sensing have attracted wide attention in the area of Internet of Things (IoT). Among them, some tags can sense the property change of objects without an integrated sensor, which is a new trend of passive sensing based on tag. The purpose of this paper is to review recent research on passive self-sensing tags (PSSTs). Design/methodology/approach The PSSTs reported in the past decade are classified in terms of sensing mode, composition and the ways of power supply. This paper presents operation principles of PSSTs and analyzes the characteristics of them. Moreover, the paper focuses on summarizing the latest sensing parameters of PSSTs and their matching equipment. Finally, some potential applications and challenges faced by this emerging technique are discussed. Findings PSST is suitable for long-term and large-scale monitoring compared to conventional sensors because it gets rid of the limitation of battery and has relatively low cost. Also, the static information of objects stored in different PSSTs can be identified by a single reader without touch. Originality/value This paper provides a detailed and timely review of the rapidly growing research in PSST.


Sensors ◽  
2018 ◽  
Vol 18 (11) ◽  
pp. 3746 ◽  
Author(s):  
Antonio Lazaro ◽  
Ramon Villarino ◽  
David Girbau

In this article, an overview of recent advances in the field of battery-less near-field communication (NFC) sensors is provided, along with a brief comparison of other short-range radio-frequency identification (RFID) technologies. After reviewing power transfer using NFC, recommendations are made for the practical design of NFC-based tags and NFC readers. A list of commercial NFC integrated circuits with energy-harvesting capabilities is also provided. Finally, a survey of the state of the art in NFC-based sensors is presented, which demonstrates that a wide range of sensors (both chemical and physical) can be used with this technology. Particular interest arose in wearable sensors and cold-chain traceability applications. The availability of low-cost devices and the incorporation of NFC readers into most current mobile phones make NFC technology key to the development of green Internet of Things (IoT) applications.


2021 ◽  
Vol 21 (4) ◽  
pp. 316-321
Author(s):  
Abdul Basit ◽  
Muhammad Irfan Khattak ◽  
Ayman Althuwayb ◽  
Jamel Nebhen

In this article, a simple method is developed to design a highly miniaturized tri-band bandpass filter (BPF) utilizing two asymmetric coupled resonators with one step discontinuity and one uniform impedance resonator (UIR) for worldwide interoperability for microwave access (WiMAX) and radio frequency identification (RFID) applications. The first and second passbands located at 3.7 GHz and 6.6 GHz are achieved through two asymmetric coupled step impedance resonators (SIRs), while the third passband, centered at 9 GHz, is achieved using a half-wavelength UIR, respectively. The fundamental frequencies of this BPF are implemented by tuning the physical length ratio (α) and impedance ratio (R) of the asymmetric SIRs. The proposed filter is designed and fabricated with a circuit dimension of 13.69 mm × 25 mm (0.02 λg × 0.03 λg), where λg represents the guided wavelength at the first passband. The experimental and measured results are provided with good matching.


Author(s):  
Emran Md Amin ◽  
Nemai Chandra Karmakar

A novel approach for non-invasive radiometric Partial Discharge (PD) detection and localization of faulty power apparatuses in switchyards using Chipless Radio Frequency Identification (RFID) based sensor is presented. The sensor integrates temperature sensing together with PD detection to assist on-line automated condition monitoring of high voltage equipment. The sensor is a multi-resonator based passive circuit with two antennas for reception of PD signal from the source and transmission of the captured PD to the base station. The sensor captures PD signal, processes it with designated spectral signatures as identification data bits, incorporates temperature information, and retransmits the data with PD signals to the base station. Analyzing the PD signal in the base station, both the PD levels and temperature of a particular faulty source can be retrieved. The prototype sensor was designed, fabricated, and tested for performance analysis. Results verify that the sensor is capable of identifying different sources at the events of PD. The proposed low cost passive RFID based PD sensor has a major advantage over existing condition monitoring techniques due to its scalability to large substations for mass deployment.


Sign in / Sign up

Export Citation Format

Share Document