scholarly journals Electric vehicle technology impacts on energy

Author(s):  
Wael A. Salah ◽  
Mahmoud A. M. Albreem ◽  
Basim Alsayid ◽  
Basem Abu Zneid ◽  
Mutasem Alkhasawneh ◽  
...  

The CO<sub>2</sub> emission level is becoming a serious issue worldwide. The continuous increase in gasoline price forms the essential base of development of electric vehicle (EV) drives. Moreover, economic and environmental issues relate to fabrication and operation of traditional powered vehicles. The basic considerations and development perspectives of EVs are presented in this paper. The development of an efficiently designed motor and drive satisfy the need of efficient characteristics that enable EVs to perform as part of the propulsion unit. The use of digital signal controllers compared with conventional control systems minimizes the motor’s total harmonic distortion, lowers operating temperatures, and produces high efficiency and power factor ratings. This paper addresses the view of EV technology as well its advantages over other technologies.

Machines ◽  
2020 ◽  
Vol 8 (3) ◽  
pp. 56 ◽  
Author(s):  
Fatemeh Rahmani ◽  
Payam Niknejad ◽  
Tanushree Agarwal ◽  
Mohammadreza Barzegaran

High-frequency wireless power transfer (WPT) technology provides superior compatibility in the alignment with various WPT standards. However, high-efficiency and compact single-phase power switching systems with ideal snubber circuits are required for maximum power transfer capability. This research aims to develop an inverter using Gallium Nitride (GaN) power transistors, optimized RCD (resistor/capacitor/diode) snubber circuits, and gate drivers, each benefitting WPT technology by reducing the switching and conduction loss in charging electric vehicle batteries. A full-bridge GaN inverter was simulated and instituted as part of the wireless charging circuit design. The RCD circuits were adjusted by transferring maximum power from the power supply to the transmitter inductor. For verification of the simulated output, lab-scale experiments were implemented for two half-bridges controlled by gate drivers with corresponding snubber circuits. After authenticating the output results, the GaN inverter was tested with an input range of 30 V to deduce the success of charging electric vehicle batteries within an efficient time frame. The developed inverter, at 80 kHz frequency, was applied in place of a ready-to-use evaluation board, fully reducing less harmonic distortion and greatly increasing WPT system efficiency (~93%). In turn, the designed GaN inverter boasts considerable energy savings, resulting in a more cost-effective solution for manufacturers.


2020 ◽  
Vol 10 (12) ◽  
pp. 4179
Author(s):  
Ali Saadon Al-Ogaili ◽  
Ishak Bin Aris ◽  
Agileswari Ramasamy ◽  
Tengku Juhana Tengku Hashim ◽  
Marayati Binti Marsadek ◽  
...  

Electric vehicles usage and adoption have expanded rapidly over the last decade, as the global energy demand is shifting away from fossil fuels. The recent development of electric vehicle charging technology, which is a fast charging mode, enables an electric vehicle to be fully charged within 10 minutes. However, the generated harmonics, control complexity, and cost of fast charging are the main challenges that need to be addressed to further expand the electric vehicle fast charging technologies. In this manuscript, a new electric vehicle fast charger was designed by introducing the three-stage converters based on the integration between internal model controller with synchronized decoupled controller algorithms. The proposed charger can provide two types of charging approaches, namely alternating current (AC) fast charging and direct current (DC) fast charging. To verify the effectiveness of the proposed charger, the model is developed and simulated in MATLAB/Simulink 2018a platform. Additionally, experimental verification, which utilizes a digital signal processor (TMS320F28335), is conducted to further support the design concept and the simulation findings. These research results have indicated that the proposed charger is applicable for fast AC and DC charging. Moreover, the total harmonic distortion value for the input current is 1.55%, where it has constantly been maintained within the standard limits, thus showing the effectiveness of proposed charger in performing the charging process without causing any significant impact to the grid.


2017 ◽  
Vol 1 (1) ◽  
Author(s):  
Yu Zhanning

With the growing shortage of energy and environmental pollution problems, the community on the car's efficient, clean, economic and security put forward higher requirements. This paper introduces the history of fuel cell vehicles, the classification of electric vehicles, the fuel cell electric vehicle technology, the classification of fuel cells, the problems existing in fuel cell technology and the urgent need to be solved, and the development prospects of fuel electric vehicles, analyzes the fuel cell electric the key technology of automobile in development and application needs to be solved. Pointed out that the fuel cell as a new energy, with its high efficiency and zero pollution and other advantages of increasing attention, fuel cell electric vehicles and its technology has also been more widely applied and developed.


2021 ◽  
Vol 11 (3) ◽  
pp. 1211
Author(s):  
En-Chih Chang ◽  
Chun-An Cheng ◽  
Rong-Ching Wu

This paper develops a full-bridge DC-AC converter, which uses a robust optimal tracking control strategy to procure a high-quality sine output waveshape even in the presence of unpredictable intermissions. The proposed strategy brings out the advantages of non-singular fast convergent terminal attractor (NFCTA) and chaos particle swarm optimization (CPSO). Compared with a typical TA, the NFCTA affords fast convergence within a limited time to the steady-state situation, and keeps away from the possibility of singularity through its sliding surface design. It is worth noting that once the NFCTA-controlled DC-AC converter encounters drastic changes in internal parameters or the influence of external non-linear loads, the trembling with low-control precision will occur and the aggravation of transient and steady-state performance yields. Although the traditional PSO algorithm has the characteristics of simple implementation and fast convergence, the search process lacks diversity and converges prematurely. So, it is impossible to deviate from the local extreme value, resulting in poor solution quality or search stagnation. Thereby, an improved version of traditional PSO called CPSO is used to discover global optimal NFCTA parameters, which can preclude precocious convergence to local solutions, mitigating the tremor as well as enhancing DC-AC converter performance. By using the proposed stable closed-loop full-bridge DC-AC converter with a hybrid strategy integrating NFCTA and CPSO, low total harmonic distortion (THD) output-voltage and fast dynamic load response are generated under nonlinear rectifier-type load situations and during sudden load changes, respectively. Simulation results are done by the Matlab/Simulink environment, and experimental results of a digital signal processor (DSP) controlled full-bridge DC-AC converter prototype confirm the usefulness of the proposed strategy.


1995 ◽  
Vol 27 (6) ◽  
pp. 835-862 ◽  
Author(s):  
C O Quandt

The California Air Resources Board has mandated that by 1998 2% of new vehicles sold in California must be zero emission, effectively, electric vehicles. This requirement is largely responsible for the electric vehicle development programs run by almost every global automobile manufacturer that does business in the United States. At present, no single electric vehicle technology, from battery type, to propulsion system, to vehicle design, represents a standard for a protoelectric vehicle industry. In this paper competing electric vehicle technologies are reviewed, leading public and private electric vehicle research programs worldwide are summarized, and the barriers faced by competing technological systems in terms of manufacturing and infrastructural requirements are examined.


Sign in / Sign up

Export Citation Format

Share Document