scholarly journals Efficiency improvement of dual three-phase permanent magnet synchronous motor using modified switching table DTC for electric ship propulsion

Author(s):  
Aziz El Afia ◽  
Mhammed Hasoun ◽  
Mohamed Khafallah ◽  
Karim Benkirane

A direct torque control using a classical switching- table ST-DTC can be used to control the torque and thus the speed of Dual Three-Phase Permanent Magnet Synchronous Motor (DTP-PMSM). The principle is based on direct application of control sequence by using two hysteresis regulators and a switching table. A large stator current containing low order harmonics is produced during the application of the classic ST-DTC technique, this leads to higher losses affecting the efficiency of the machine. To allow a reduction of these harmonics a modified switching-table approach based DTC technique is examined. Indeed, an improved ST-DTC strategy, which consist of replacing the vectors of the classical table with synthetic vectors, is discussed. The simulation results confirm the validity of the selected strategy.

2021 ◽  
Vol 54 (2) ◽  
pp. 345-354
Author(s):  
Fayçal Mehedi ◽  
Habib Benbouhenni ◽  
Lazhari Nezli ◽  
Djamel Boudana

In this work, the direct torque control (DTC) is applied to the five-phase permanent magnet synchronous motor (FP-PMSM). The DTC method based on classical space vector pulse width modulation (SVPWM) is a common solution used to overcome traditional problems; such as stator flux ripple, electromagnetic torque ripple and gives more total harmonic distortion (THD) of the stator current. The actual paper is based on improving the performance of DTC-SVPWM by using the feedforward neural networks (FNNs) instead of the proportional-integral (PI) regulators and hysteresis comparators (HCs) of the conventional SVPWM strategy. This algorithm can solve the traditional PI regulators and HCs problems which are represented in responses dynamic and reduce the torque ripple, flux ripple, and the THD of stator current of FP-PMSM drives. The proposed strategy was tested in different tests with simulation using Matlab software.


2021 ◽  
Vol 297 ◽  
pp. 01017
Author(s):  
Fouad Labchir ◽  
Mhammed Hasoun ◽  
Aziz El Afia ◽  
Karim Benkirane ◽  
Mohamed Khafallah

In this paper a direct torque control strategy for dual three-phase permanent magnet synchronous motor (DTP-PMSM) is presented, the machine has two sets of three-phase stator windings spatially phase shifted by 30 electric degrees. In order to reduce the stator harmonic current, torque and flux are controlled based on regulators and Vector Space Decomposition technique. The proposed approach has the benefits of low stator current distortion and low torque ripple. The validity and the efficiency of the selected technique are confirmed by simulation results.


2013 ◽  
Vol 712-715 ◽  
pp. 2757-2760
Author(s):  
Jun Li Zhang ◽  
Yu Ren Li ◽  
Long Fei Fu ◽  
Fan Gao

In order to deeply understand the characteristics of the permanent magnet synchronous motor direct torque control method, its mathematical models were established in the two-phase stationary coordinate system, the two-phase synchronous rotating coordinate system, and x-y stator synchronous rotating coordinate system. The implementation process of direct torque control method in varied stator winding connection was analyzed in detail. In order to improve the speed and torque performance of the permanent magnet synchronous motor, the direct torque control block diagram and the space voltage vector selection table were given. Finally, the summary and outlook of reducing torque ripple in the permanent magnet synchronous motor direct torque control methods.


2012 ◽  
Vol 220-223 ◽  
pp. 1040-1043
Author(s):  
Hong Cui ◽  
You Qing Gao

High-speed permanent magnet synchronous motor (PMSM) is more and more widely applied in high precision processing and high-performance machines. It is very important to research practical control strategy for the stability operation of the high-speed PMSM. The strategy of sensorless grey prediction fuzzy direct torque control (DTC) is proposed which is suitable for high-speed PMSM control system. The method of prediction fuzzy control based on DTC is used to gain the flux, torque and flux oriented angle through the prediction model of the motor parameters. The best control scheme is gained by fuzzy reasoning to overcome the lag on the system making the adjustment process stable and realizing accurate predictive control. Thereby, the dynamic response of the system, anti-disturbance capability and control accuracy can be improved.


2013 ◽  
Vol 321-324 ◽  
pp. 1679-1685
Author(s):  
Jun Li ◽  
Jia Jun Yu ◽  
Zhenxing Chen

This paper mainly reviews the development of permanent magnet synchronous motor drive system. It presents several approaches of PMSM control strategies, including control strategies based on classical control, modern control and intelligent control. Theoretical background briefly describes the properties of these control techniques. Among these control strategies, vector control and direct torque control are considered as the mature methods for PMSM motors control currently. Advanced control strategies, with adaptive control, variable structure control and intelligent control included, improve the performance of PMSM in some respects, such as variations of plant parameters sensitivity, external disturbance and so on. It shows that the researches in this area are still a popular research topic. Finally, this paper prospected the foreground of the control strategies for PMSM.


Author(s):  
Bowen Ning ◽  
Shanmei Cheng ◽  
Baokang Yan ◽  
Fengxing Zhou

This study investigates the direct torque control strategy of permanent magnet synchronous motor with the space vector modulation, on account of large torque fluctuation and varied switching frequency of classic direct torque control strategy. The relationship among the terminal control voltages and the torque and stator flux of the permanent magnet synchronous motor is derived through the dynamic model of motor. Accordingly, the torque and the flux closed-loop feedback control structure are established, where the error signals are regulated by the proportional and integral controllers to generate output voltages. Furthermore, the parameters of the controllers are designed through explicitly analyzing the frequency domain models of the torque control loop and the flux control loop. The accurate calculation formula of control parameters, which has both explicit setting target and definite physical meaning, is obtained. Therefore, the design of torque and flux controller parameters becomes easy in the direct torque control with space vector modulation technology, and satisfactory flux and torque control can be acquired. Finally, simulation and experimental tests are demonstrated in support of the validity of the investigated scheme and the feasibility of the proposed controller parameter design.


Sign in / Sign up

Export Citation Format

Share Document